Skip to main content
Log in

Update on Imaging Modalities for Ocular Surface Pathologies

  • Cornea (T Yamaguchi, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To discuss recent studies of imaging modalities for ocular surface pathologies.

Recent Findings

Novel micro-ocular coherence tomography technology can produce high-resolution images of corneal cellular and nervous structures. Ocular coherence tomography angiography can aid in detecting early-stage limbal stem cell deficiency. Several studies used in vivo confocal microscopy to evaluate corneal nerve metrics and morphology.

Summary

The applications of anterior segment optical coherence tomography, anterior segment optical coherence tomography angiography, ultrasound biomicroscopy, and in vivo confocal microscopy are useful technologies for imaging the ocular surface. Several studies have used artificial intelligence in combination with imaging technologies to create reliable and effective systems to detect and visualize ocular surface pathologies. AS OCT continues to be a key imaging tool and future development of μOCT technology may further enhance its utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81 This paper documented the first to use OCT on biological tissue.

    Article  CAS  Google Scholar 

  2. •• Izatt JA, Hee MR, Swanson EA, Lin CP, Huang D, Schuman JS, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994;112(12):1584–9 This paper present the first use of OCT to image the anterior segment of the eye.

    Article  CAS  Google Scholar 

  3. Karp CL, Mercado C, Venkateswaran N, Ruggeri M, Galor A, Garcia A, et al. Use of high-resolution optical coherence tomography in the surgical management of ocular surface squamous neoplasia: a pilot study. Am J Ophthalmol. 2019;206:17–31.

    Article  Google Scholar 

  4. Ang M, Baskaran M, Werkmeister RM, Chua J, Schmidl D, Aranha Dos Santos V, et al. Anterior segment optical coherence tomography. Prog Retin Eye Res. 2018;66:132–56.

    Article  Google Scholar 

  5. • Venkateswaran N, Mercado C, Wall SC, Galor A, Wang J, Karp CL. High resolution anterior segment optical coherence tomography of ocular surface lesions: a review and handbook. Expert Rev Ophthalmol. 2020;16(2):81–95 This paper presents a thorough review of the usage of AS OCT. They discuss the presentations of various ocular surface pathologies on AS OCT and how to interpret them.

  6. Shousha MA, Karp CL, Perez VL, Hoffmann R, Ventura R, Chang V, et al. Diagnosis and management of conjunctival and corneal intraepithelial neoplasia using ultra high-resolution optical coherence tomography. Ophthalmology. 2011 Apr 20;118(8):1531–7.

  7. Soliman W, Mohamed TA. Spectral domain anterior segment optical coherence tomography assessment of pterygium and pinguecula. Acta Ophthalmol. 2010;90(5):461–5.

  8. Nanji AA, Sayyad FE, Galor A, Dubovy S, Karp CL. High-resolution optical coherence tomography as an adjunctive tool in the diagnosis of corneal and conjunctival pathology. The Ocular Surface. 2015;13(3):226–35.

  9. Shousha MA, Perez VL, Wang J, Ide T, Jiao S, Chen Q, et al. Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet's membrane in Fuchs' dystrophy. Ophthalmology. 2010;117(6):1220–7.

  10. Ibrahim OMA, Dogru M, Takano Y, Satake Y, Wakamatsu TH, Fukagawa K, et al. Application of Visante optical coherence tomography tear meniscus height measurement in the diagnosis of dry eye disease. Ophthalmology. 2010;117(10):1923–9.

  11. Steinberg J, Casagrande MK, Frings A, Katz T, Druchkiv V, Richard G, et al. Screening for subclinical keratoconus using swept-source Fourier domain anterior segment optical coherence tomography. Cornea. 2015;34(11):1413–9.

  12. Steven P, Le Blanc C, Velten K, Lankenau E, Krug M, Oelckers S, et al. Optimizing Descemet membrane endothelial Keratoplasty using intraoperative optical coherence tomography. JAMA Ophthalmol. 2013;131(9):1135–42.

  13. Saad A, Guilbert E, Grise-Dulac A, Sabatier P, Gatinel D. Intraoperative OCTAssisted DMEK. Cornea. 2015;34(7):802–7.

  14. Titiyal JS, Kaur M, Falera R, Jose CP, Sharma N. Evaluation of time to donor Lenticule apposition using intraoperative optical coherence tomography in Descemet stripping automated endothelial Keratoplasty. Cornea. 2016;35(4):477–81.

  15. AlTaan SL, Termote K, Elalfy MS, Hogan E, Werkmeister R, Schmetterer L, et al. Optical coherence tomography characteristics of different types of big bubbles seen in deep anterior lamellar keratoplasty by the big bubble technique. Eye (Lond). 2016;30(11):1509–16.

    Article  CAS  Google Scholar 

  16. Titiyal JS, Kaur M, Falera R. Intraoperative optical coherence tomography in anterior segment surgeries. Indian J Ophthalmol. 2017;65(2):116–21.

    Article  Google Scholar 

  17. • Wartak A, Schenk MS, Bühler V, Kassumeh SA, Birngruber R, Tearney GJ. Micro-optical coherence tomography for high-resolution morphologic imaging of cellular and nerval corneal micro-structures. Biomed Opt Express. 2020;11(10):5920–33 This study discusses micro-OCT, a new and exciting development in OCT technology.

  18. Liang Q, Le Q, Cordova DW, Tseng CH, Deng SX. Corneal epithelial thickness measured using anterior segment optical coherence tomography as a diagnostic parameter for limbal stem cell deficiency. Am J Ophthalmol. 2020;216:132–9.

    Article  Google Scholar 

  19. Tran AQ, Venkateswaran N, Galor A, Karp CL. Utility of high-resolution anterior segment optical coherence tomography in the diagnosis and management of sub-clinical ocular surface squamous neoplasia. Eye Vis (Lond). 2019;6:27.

    Article  Google Scholar 

  20. Kaliki S, Maniar A, Jakati S, Mishra DK. Anterior segment optical coherence tomography features of pseudoepitheliomatous hyperplasia of the ocular surface: a study of 9 lesions. Int Ophthalmol. 2020;41(1):113–9.

  21. Wertheimer CM, Elhardt C, Wartak A, Luft N, Kassumeh S, Dirisamer M, et al. Corneal optical density in Fuchs endothelial dystrophy determined by anterior segment optical coherence tomography. Eur J Ophthalmol. 2020 Jul:112067212094479.

  22. • Eleiwa T, Elsawy A, Özcan E, Abou Shousha M. Automated diagnosis and staging of Fuchs' endothelial cell corneal dystrophy using deep learning. Eye Vis (Lond). 2020;7:44 This study presents an exciting use of articial intelligence technology in combination with AS OCT.

    Article  Google Scholar 

  23. • Zéboulon P, Ghazal W, Gatinel D. Corneal edema visualization with optical coherence tomography using deep learning. Cornea. 2020; Publish Ahead of Print. This study also presents an exciting use of artifical intelligence in combination with AS OCT.

  24. • Yim M, Galor A, Nanji A, Joag M, Palioura S, Feuer W, et al. Ability of novice clinicians to interpret high-resolution optical coherence tomography for ocular surface lesions. Can J Ophthalmol. 2018;53(2):150–4 This paper highlights the ease with which novice clinicians can interpret AS OCT imagery to identify ocular surface lesions.

  25. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

    Article  Google Scholar 

  26. •• Ang M, Sim DA, Keane PA, Sng CCA, Egan CA, Tufail A, et al. Optical coherence tomography angiography for anterior segment vasculature imaging. Ophthalmology. 2015;122(9):1740–7 This study presents the first use of OCTA technology for imaging the anterior segment.

  27. Lopez-Saez MP, Ordoqui E, Tornero P, Baeza A, Sainza T, Zubeldia JM, et al. Fluorescein-induced allergic reaction. Ann Allergy Asthma Immunol. 1998;81(5):428–30.

  28. Hope-Ross M, Yannuzzi LA, Gragoudas ES, Guyer DR, Slakter JS, Sorenson JA, et al. Adverse reactions due to Indocyanine green. Ophthalmology. 1994;101(3):529–33.

  29. Gao SS, Jia Y, Zhang M, Su JP, Liu G, Hwang TS, et al. Optical coherence tomography angiography. Investig Opthalmol Vis Sci. 2016;57(9) Oct27–Oct36.

  30. Tan AC, Tan GS, Denniston AK, Keane PA, Ang M, Milea D, et al. An overview of the clinical applications of optical coherence tomography angiography. Eye. 2017;32(2):262–86.

  31. • Binotti WW, Nosé RM, Koseoglu ND, Dieckmann GM, Kenyon K, Hamrah P. The utility of anterior segment optical coherence tomography angiography for the assessment of limbal stem cell deficiency. The Ocular Surface. 2021;19:94–103 This paper presents the use of AS OCTA for imaging and assessing limbal stem cell deficiency.

  32. Binotti WW, Koseoglu ND, Nosé RM, Kenyon KR, Hamrah P. Novel parameters to assess the severity of corneal neovascularization using anterior segment optical coherence tomography angiography. Am J Ophthalmol. 2020;222:206–17.

    Article  Google Scholar 

  33. Liu Z, Karp CL, Galor A, Al Bayyat GJ, Jiang H, Wang J. Role of optical coherence tomography angiography in the characterization of vascular network patterns of ocular surface squamous neoplasia. Ocul Surf. 2020;18(4):926–35.

    Article  Google Scholar 

  34. Nampei K, Oie Y, Kiritoshi S, Morota M, Satoh S, Kawasaki S, et al. Comparison of ocular surface squamous neoplasia and pterygium using anterior segment optical coherence tomography angiography. Am J Ophthalmol Case Rep. 2020;20:100902.

    Article  Google Scholar 

  35. Brouwer NJ, Marinkovic M, Bleeker JC, Luyten GPM, Jager MJ. Anterior segment OCTA of melanocytic lesions of the conjunctiva and iris. Am J Ophthalmol. 2021;222:137–47.

  36. •• Pavlin CJ, Sherar MD, Foster FS. Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology. 1990;97(2):244–50 This study presents the first in vivo use of UBM technology for imaging the eye.

  37. Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology. 1991;98(3):287–95.

  38. Pavlin CJ, McWhae JA, McGowan HD, Foster FS. Ultrasound biomicroscopy of anterior segment tumors. Ophthalmology. 1992;99(8):1220–8.

  39. Pavlin CJ, Foster FS. Ultrasound biomicroscopy. High-frequency ultrasound imaging of the eye at microscopic resolution. Radiol Clin N Am. 1998;36(6):1047–58.

  40. Alexander JL, Wei L, Palmer J, Darras A, Levin MR, Berry JL, et al. A systematic review of ultrasound biomicroscopy use in pediatric ophthalmology. Eye (Lond). 2021;35(1):265–76.

    Article  Google Scholar 

  41. Nahum Y, Galor O, Atar M, Bahar I, Livny E. Real-time intraoperative ultrasound biomicroscopy for determining graft orientation during Descemet's membrane endothelial keratoplasty. Acta Ophthalmol. 2020;99(1):96–100.

  42. Meel R, Dhiman R, Sen S, Kashyap S, Tandon R, Vanathi M. Ocular surface squamous neoplasia with intraocular extension: clinical and ultrasound biomicroscopic findings. Ocul Oncol Pathol. 2018;5(2):122–7.

  43. • Vizvári E, Skribek Á, Polgár N, Vörös A, Sziklai P, Tóth-Molnár E. Conjunctival melanocytic naevus: diagnostic value of anterior segment optical coherence tomography and ultrasound biomicroscopy. PLoS One. 2018;13(2):e0192908 This paper highlights the relative strengths and weaknesses of AS OCT and UBM for imaging conjunctival melanocytic nevi.

  44. Lemp MA, Dilly PN, Boyde A. Tandem-scanning (confocal) microscopy of the full-thickness cornea. Cornea. 1985;4(4):205–9.

  45. •• Cavanagh HD, Jester JV, Essepian J, Shields W, Lemp MA. Confocal microscopy of the living eye. CLAO J. 1990;16(1):65–73 This paper presents the first use of in vivo confocal micrscopy to image the cornea.

  46. Nwaneshiudu A, Kuschal C, Sakamoto FH, Rox Anderson R, Schwarzenberger K, Young RC. Introduction to confocal microscopy. J Investig Dermatol. 2012;132(12):e3.

  47. Cruzat A, Qazi Y, Hamrah P. In vivo confocal microscopy of corneal nerves in health and disease. The Ocular Surface. 2017;15(1):15–47.

  48. Bille JF, editor. High resolution imaging in microscopy and ophthalmology: new Frontiers in biomedical optics. Cham: Springer International Publishing; 2019.

  49. Patel DV, Grupcheva CN, McGhee CN. Imaging the microstructural abnormalities of Meesmann corneal dystrophy by in vivo confocal microscopy. Cornea. 2005;24(6):669–73.

  50. Patel SV, McLaren JW. In vivo confocal microscopy of Fuchs endothelial dystrophy before and after endothelial Keratoplasty. JAMA Ophthalmol. 2013;131(5):611–8.

  51. Labbé A, Gheck L, Iordanidou V, Mehanna C, Brignole-Baudouin F, Baudouin C. An in vivo confocal microscopy and impression cytology evaluation of pterygium activity. Cornea. 2010;29(4):392–9.

  52. Q-hua L, Wang W-t, J-xu H, X-huai S, Zheng T-y, Zhu W-q, et al. An in vivo confocal microscopy and impression cytology analysis of goblet cells in patients with chemical burns. Investig Opthalmol Vis Sci. 2010;51(3):1397–400.

  53. Parrozzani R, Lazzarini D, Dario A, Midena E. In vivo confocal microscopy of ocular surface squamous neoplasia. Eye. 2011;25(4):455–60.

  54. Schneiher E, Paulsen F, Jacobi C. Assessment of Langerhans cells in the central cornea as tool for monitoring inflammatory changes in patients with keratoconjunctivitis sicca under topical therapy with cyclosporine a 0.05% eye drops. Klin Monatsbl Augenheilkd. 2020;237(5):669–74.

  55. Takhar JS, Joye AS, Lopez SE, Marneris AG, Tsui E, Seitzman GD, et al. Validation of a novel confocal microscopy imaging protocol with assessment of reproducibility and comparison of nerve metrics in dry eye disease compared with controls. Cornea. 2020;40(5):603–12.

  56. Dermer H, Hwang J, Mittal R, Cohen AK, Galor A. Corneal sub-basal nerve plexus microneuromas in individuals with and without dry eye. Br J Ophthalmol. 2021. https://doi.org/10.1136/bjophthalmol-2020-317891.

  57. Guillon-Rolf R, Hau S, Larkin DF, et al. Br J Ophthalmol. 2020. https://doi.org/10.1136/bjophthalmol-2020-316672.

  58. Leonardi A, Carraro G, Modugno RL, Rossomando V, Scalora T, Lazzarini D, et al. Cornea verticillata in Fabry disease: a comparative study between slit-lamp examination and in vivo corneal confocal microscopy. Br J Ophthalmol. 2019;104(5):718–22.

  59. • Wei S, Shi F, Wang Y, Chou Y, Li X. A deep learning model for automated sub-basal corneal nerve segmentation and evaluation using in vivo confocal microscopy. Transl Vis Sci Technol. 2020;9(2):32 This paper presents an exciting combination of artificial intelligence technology with IVCM imaging to study the sub-basal corneal nerve fiber.

Download references

Funding

This article is funded by the NIH Center Core Grant P30EY014801, RPB Unrestricted Award, Dr. Ronald and Alicia Lepke Grant, The Lee and Claire Hager Grant, The Robert Farr Family Grant, The Grant and Diana Stanton-Thornbrough, The Robert Baer Family Grant, The Emilyn Page and Mark Feldberg Grant, The Calvin and Flavia Oak Support Fund, The Robert Farr Family Grant, The Jose Ferreira de Melo Grant, The Richard and Kathy Lesser Grant, The Michele and Ted Kaplan Grant, and the Richard Azar Family Grant(institutional grants).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol L. Karp.

Ethics declarations

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cornea

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, O.P., Galor, A., AlBayyat, G. et al. Update on Imaging Modalities for Ocular Surface Pathologies. Curr Ophthalmol Rep 9, 39–47 (2021). https://doi.org/10.1007/s40135-021-00265-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-021-00265-1

Keywords

Navigation