Skip to main content

Advertisement

Log in

Spinal Muscular Atrophy: Entering the Treatment Age

  • Neurology (D Stephenson, Section Editor)
  • Published:
Current Pediatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Spinal muscular atrophy is a devastating neurodegenerative disorder. With the recent approval of the first treatment, nusinersen (Spinraza), the natural course of the disease will change. It poses new challenges in administration and highlights the importance of early diagnosis.

Recent Findings

Nusinersen, an antisense oligonucleotide, helps to ameliorate disease severity in patients with spinal muscular atrophy (SMA)1 and SMA2 early in their disease course, helping to decrease the risk of death and respiratory support, as well as enhance motor outcomes in all patients with SMA. Treatment earlier in the course of disease is associated with better outcomes. Overall, treatment is well tolerated, but repeated intrathecal administration can be both technically difficult as well as expensive.

Summary

Nusinersen is an important step forward in the treatment of spinal muscular atrophy. With the availability of a treatment, we have to change our approach to diagnosis, focusing on carrier testing and/or newborn screening as well as a low threshold for clinical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogino S, Leonard DGB, Rennert H, Wilson RB. Spinal muscular atrophy genetic testing experience at an academic medical center. J Mol Diagn. 2002;4:53–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Majumdar R, Rehana Z, Al Jumah M, Fetaini N. Spinal muscular atrophy carrier screening by multiplex polymerase chain reaction using dried blood spot on filter paper. Ann Hum Genet. 2005;69:216–21.

    Article  CAS  PubMed  Google Scholar 

  3. • Macdonald WK, Hamilton D, Kuhle S. SMA carrier testing: a meta-analysis of differences in test performance by ethnic group. Prenat Diagn. 2014;34:1219–26. Describes the limitations of carrier testing among different ethnic groups.

    Article  PubMed  Google Scholar 

  4. Darras BT. Spinal muscular atrophies. Pediatr Clin N Am. 2015;62:743–66.

    Article  Google Scholar 

  5. Finkel RS, McDermott MP, Kaufmann P, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology. 2014;83:810–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kaufmann P, McDermott MP, Darras BT, et al. Prospective cohort study of spinal muscular atrophy types 2 and 3. Neurology. 2012;79:1889–97.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kaufmann P, McDermott MP, Darras BT, et al. Observational study of spinal muscular atrophy type 2 and 3: functional outcomes over 1 year. Arch Neurol. 2011;68:779–86.

    Article  PubMed  Google Scholar 

  8. Rudnik-Schöneborn S, Lützenrath S, Borkowska J, Karwanska A, Hausmanowa-Petrusewicz I, Zerres K. Analysis of creatine kinase activity in 504 patients with proximal spinal muscular atrophy types I-III from the point of view of progression and severity. Eur Neurol. 1998;39:154–62.

    Article  PubMed  Google Scholar 

  9. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80:155–65.

    Article  CAS  PubMed  Google Scholar 

  10. Ogino S, Leonard DGB, Rennert H, Wilson RB. Spinal muscular atrophy genetic testing experience at an academic medical center. J Mol Diagn. 2002;4:53–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burghes AHM, Beattie CE. The NIH public access policy. Brain Behav Immun. 2008;22:4109.

    Google Scholar 

  12. Schrank B, Götz R, Gunnersen JM, Ure JM, Toyka KV, Smith AG, et al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A. 1997;94:9920–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A. 1999;96:6307–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. Biochim Biophys Acta - Gene Regul Mech. 2017;1860:299–315.

    Article  CAS  Google Scholar 

  15. Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet. 2002;70:358–68.

    Article  PubMed  Google Scholar 

  16. Singh NK, Singh NK, Singh RN, Singh RN. Splicing of a critical exon of human. Society. 2006;26:1333–46.

    CAS  Google Scholar 

  17. Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol. 2007;5:729–44.

    Article  CAS  Google Scholar 

  18. Hua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF, et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev. 2010;24:1634–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Passini MA, Bu J, Richards AM, et al. Ameliorate symptoms of severe spinal muscular atrophy. 2011. https://doi.org/10.1126/scitranslmed.3001777.Antisense.

  20. Rigo F, Chun SJ, Norris DA, et al. Pharmacology of a central nervous system delivered 2’-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther. 2014;350:46–55.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, et al. Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology. 2016;86:890–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. •• Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388:3017–26. Phase 2 study of nursinersen, demonstrating efficacy of the drug throughout the brain after intrathecal administration.

    Article  CAS  PubMed  Google Scholar 

  23. •• Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. 2017;377:1723–32. Phase 3 study of nusinersen, demonstrating efficacy in SMA type 1 patients.

    Article  CAS  PubMed  Google Scholar 

  24. Kuntz NL, Mercuri E, Finkel RS, Kirschner J, Chiriboga CA, Sun P, et al. No Title. In: Efficacy and safety of nusinersen in later-onset spinal muscular atrophy (SMA) End of Study results from the phase 3 CHERSH study. 2017. p S264.

  25. De Vivo DC, Bertini E, Hwu WL, Foster R, Gheuens S, Farwell W, et al. No title. In: Child Neurol. Soc. One year outcomes following treatment with Nusinersen: Interim results from the NURTURE Study of presymptomatic infants with genetically diagnosed spinal muscular atrophy (SMA). 2018. pp S265–6.

  26. Foust KD, Wang X, McGovern VL, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol. 2010;28:271–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiriboga CA. Nusinersen for the treatment of spinal muscular atrophy. Expert Rev Neurother. 2017;17:955–62.

    Article  CAS  PubMed  Google Scholar 

  28. Haché M, Swoboda KJ, Sethna N, Farrow-Gillespie A, Khandji A, Xia S, et al. Intrathecal injections in children with spinal muscular atrophy. J Child Neurol. 2016;31:899–906.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Engelhardt JA. Comparative renal toxicopathologyof antisense oligonucleotides. Nucleic Acid Ther. 2016;26:199–209.

    Article  CAS  PubMed  Google Scholar 

  30. Wood SL, Brewer F, Ellison R, Biggio JR, Edwards RK. Prenatal Carrier Screening for Spinal Muscular Atrophy. Am J Perinatol. 2016;33(12):1211–7. https://doi.org/10.1055/s-0036-1593347.

  31. Dobrowolski SF, Pham HT, Downes FP, Prior TW, Naylor EW, Swoboda KJ. Newborn screening for spinal muscular atrophy by calibrated short-amplicon melt profiling. Clin Chem. 2012;58:1033–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Lin C-W, Kalb SJ, Yeh W-S. Delay in diagnosis of spinal muscular atrophy: asystematic literature review. Pediatr Neurol. 2015;53:293–300. Describes what leads to delay inclinical diagnosis across different types of spinal muscular atrophy.

    Article  PubMed  Google Scholar 

  33. •• Mendell JR, Al-Zaidy S, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713–22. The first report of gene therapy in SMA, demonstrating impressive motor gains andclinical outcomes

    Article  CAS  PubMed  Google Scholar 

  34. Harrington EA, Sloan JL, Manoli I, Chandler RJ, Schneider M, McGuire PJ, et al. Neutralizing antibodies against adeno-associated viral capsids in patients with mutmethylmalonic acidemia. Hum Gene Ther. 2016;27:345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Kichula.

Ethics declarations

Conflict of Interest

Sabrina W. Yum declares no conflicts of interest. Elizabeth A Kichula was an advisor for Avexis Pharmaceuticals. John Brandsema reports grants and personal fees from Biogen, grants and personal fees from AveXis, grants and personal fees from Sarepta, personal fees from Alexion, personal fees from Marathon, and grants and personal fees from PTC Therapeutics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kichula, E.A., Yum, S.W. & Brandsema, J. Spinal Muscular Atrophy: Entering the Treatment Age. Curr Pediatr Rep 6, 9–15 (2018). https://doi.org/10.1007/s40124-018-0150-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40124-018-0150-2

Keywords

Navigation