Skip to main content

Advertisement

Log in

Less Is More: Recent Evolutions in Paediatric Surgery

  • Surgical (J Karpelowsky, Section Editor)
  • Published:
Current Pediatrics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this study was to examine some recent developments in paediatric surgery, to both highlight them and to illustrate an underlying theme.

Recent Findings

Paediatric surgeons have a desire to minimise morbidity, recognising the potential fragility of the child surrounding the disease. Modern solutions continue to address underlying pathologies, but with lower morbidity to the surrounding child. Laparoscopic surgery is an obvious example of this. It is not the only example. The move from open to percutaneous approaches for central venous access and tumour biopsy is another illustration. In some cases, an operation may not be required at all, such as treating empyema with fibrinolytics rather than surgery.

Summary

Minimising operations, minimising access, and in some cases not operating at all are underlying themes to an approach that seeks to minimise harm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Coombe RVI. Congenital hypertrophic stenosis of the pylorus. Ann Surg. 1911;54:167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mikulicz J. Zur operativen Behandlung des stenosirenden Magenschwures. Arch Klin Chir. 1888;37:79–90.

    Google Scholar 

  3. Heineke MR. Abdominal operations. N Y. 1886;1961:169.

    Google Scholar 

  4. DuFour H, Fredet P. La stenose hypertrophique du pylore chez le nourrisson et son traitment chirugical. Rev Chir. 1908;37:208–53.

    Google Scholar 

  5. Weber W. Über eine technische Neuerung bei der Operation der Pylorusstenose des Säuglings. Berliner klin Wochenschr. 1910:763–5.

  6. Niyogi A, Clarke SA. Elective paediatric surgery: what do parents really want to know? Scott Med J. 2012;57:65–8.

    Article  CAS  PubMed  Google Scholar 

  7. Maskell J, Newcombe P, Martin G, Kimble R. Psychosocial functioning differences in pediatric burn survivors compared with healthy norms. J Burn Care Res. 2013;34:465–76.

    Article  PubMed  Google Scholar 

  8. Rothenberg S. Thoracoscopic repair of esophageal atresia and tracheo-esophageal fistula in neonates: the current state of the art. Pediatr Surg Int. 2014;30:979–85.

    Article  PubMed  Google Scholar 

  9. •• Lishuang M, Zhen C, Guoliang Q, Zhen Z, Chen W, Long L, et al. Laparoscopic portoenterostomy versus open portoenterostomy for the treatment of biliary atresia: a systematic review and meta-analysis of comparative studies. Pediatr Surg Int. 2015;31:261–9. Meta-analysis of 11 studies, showing no significant differences in intraoperative and early postoperative outcomes, but a lower 2-year native liver survival with the laparoscopic approach to Kasai portoenterostomy

    Article  PubMed  Google Scholar 

  10. • Hussain MH, Alizai N, Patel B. Outcomes of laparoscopic Kasai portoenterostomy for biliary atresia: a systematic review. J Pediatr Surg. 2017;52:264–7. Ten studies demonstrating the same findings as the systematic review and meta-analysis above

    Article  PubMed  Google Scholar 

  11. Ainsworth S, McGuire W. Percutaneous central venous catheters versus peripheral cannulae for delivery of parenteral nutrition in neonates. Cochrane Database Syst Rev. 2015:CD004219.

  12. Janik JE, Conlon SJ, Janik JS. Percutaneous central access in patients younger than 5 years: size does matter. J Pediatr Surg. 2004;39:1252–6.

    Article  PubMed  Google Scholar 

  13. Iserson KV, Criss EA. Pediatric venous cutdowns: utility in emergency situations. Pediatr Emerg Care. 1986;2:231–4.

    Article  CAS  PubMed  Google Scholar 

  14. Malbezin S, Gauss T, Smith I, Bruneau B, Mangalsuren N, Diallo T, et al. A review of 5434 percutaneous pediatric central venous catheters inserted by anesthesiologists. Paediatr Anaesth. 2013;23:974–9.

    Article  PubMed  Google Scholar 

  15. Shime N, Hosokawa K, MacLaren G. Ultrasound imaging reduces failure rates of percutaneous central venous catheterization in children. Pediatr Crit Care Med. 2015;16:718–25.

    Article  PubMed  Google Scholar 

  16. Costello JM, Clapper TC, Wypij D. Minimizing complications associated with percutaneous central venous catheter placement in children: recent advances. Pediatr Crit Care Med. 2013;14:273–83.

    Article  PubMed  Google Scholar 

  17. •• Wragg RC, Blundell S, Bader M, Sharif B, Bennett J, Jester I, et al. Patency of neck veins following ultrasound-guided percutaneous Hickman line insertion. Pediatr Surg Int. 2014;30:301–4. This paper demonstrates lower vein occlusion rates after line removal following percutaneous lines (3%) compared to rates after open approaches (up to 25% vein occlusion rate)

    Article  CAS  PubMed  Google Scholar 

  18. Friend J, Lindsey-Temple S, Gollow I, Whan E, Gera P. Review of the radiation exposure during screening of surgically implanted central venous access devices. J Pediatr Surg. 2015;50:1214–9.

    Article  PubMed  Google Scholar 

  19. Hoshal VLJ. Total intravenous nutrition with peripherally inserted silicone elastomer central venous catheters. Arch Surg. 1975;110:644–6.

    Article  PubMed  Google Scholar 

  20. Rice-Townsend S, Barnes JN, Hall M, Baxter JL, Rangel SJ. Variation in practice and resource utilization associated with the diagnosis and management of appendicitis at freestanding children’s hospitals: implications for value-based comparative analysis. Ann Surg. 2014;259:1228–34.

    Article  PubMed  Google Scholar 

  21. Kanin M, Young G. Incidence of thrombosis in children with tunneled central venous access devices versus peripherally inserted central catheters (PICCs). Thromb Res. 2013;132:527–30.

    Article  CAS  PubMed  Google Scholar 

  22. Gibson C, Connolly BL, Moineddin R, Mahant S, Filipescu D, Amaral JG. Peripherally inserted central catheters: use at a tertiary care pediatric center. J Vasc Interv Radiol. 2013;24:1323–31.

    Article  PubMed  Google Scholar 

  23. Sulkowski JP, Asti L, Cooper JN, Kenney BD, Raval MV, Rangel SJ, et al. Morbidity of peripherally inserted central catheters in pediatric complicated appendicitis. J Surg Res. 2014;190:235–41.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gleason JM, Lorenzo AJ, Bowlin PR, Koyle MA. Innovations in the management of Wilms’ tumor. Ther Adv Urol. 2014;6:165–76.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Blondiaux E, Laurent M, Audureau E, Boudjemaa S, Sileo C, Lenoir M, et al. Factors influencing the diagnostic yield and accuracy of image-guided percutaneous needle biopsy of pediatric tumors: single-center audit of a 26-year experience. Pediatr Radiol. 2016;46:372–82.

    Article  PubMed  Google Scholar 

  26. Acord M, Shaikh R. Predictors of diagnostic success in image-guided pediatric soft-tissue biopsies. Pediatr Radiol. 2015;45:1529–34.

    Article  PubMed  Google Scholar 

  27. Dome JS, Perlman EJ, Graf N. Risk stratification for Wilms tumor: current approach and future directions. Am Soc Clin Oncol Educ Book. 2014;34:215–23.

    Article  Google Scholar 

  28. • Crowley JJ, Hogan MJ, Towbin RB, Saad WE, Baskin KM, Marie Cahill A, et al. Quality improvement guidelines for pediatric gastrostomy and gastrojejunostomy tube placement. J Vasc Interv Radiol. 2014. pp. 1983–91. Comprehensive consensus statement regarding interventional radiological placement of gastrostomy tubes.

  29. Clark DJ, Chakraborty A, Roebuck DJ, Thompson DNP. Ultrasound guided placement of the distal catheter in paediatric ventriculoatrial shunts-an appraisal of efficacy and complications. Childs Nerv Syst. 2016;32:1219–25.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gómez FM, Patel PA, Stuart S, Roebuck DJ. Systematic review of ablation techniques for the treatment of malignant or aggressive benign lesions in children. Pediatr Radiol. 2014;44:1281–9.

    Article  PubMed  Google Scholar 

  31. Paradiso FV, Mason EJ, Nanni L. Antegrade sclerotherapy to treat all types of varicoceles in the pediatric population: experience of a single center. Urology. 2016;98:149–53.

    Article  PubMed  Google Scholar 

  32. Heffner JE. Multicenter trials of treatment for empyema—after all these years. N Engl J Med. 2005;352:926–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kurt BA, Winterhalter KM, Connors RH, Betz BW, Winters JW. Therapy of parapneumonic effusions in children: video-assisted thoracoscopic surgery versus conventional thoracostomy drainage. Pediatrics. 2006;118:e547–53.

    Article  PubMed  Google Scholar 

  34. Avansino JR, Goldman B, Sawin RS, Flum DR. Primary operative versus nonoperative therapy for pediatric empyema: a meta-analysis. Pediatrics. 2005;115:1652–9.

    Article  PubMed  Google Scholar 

  35. •• Krenke K, Peradzyńska J, Lange J, Ruszczyński M, Kulus M, Szajewska H. Local treatment of empyema in children: a systematic review of randomized controlled trials. Acta Paediatr. 2010;99:1449–53. This 4 RCT review shows equivalent outcomes with VATS vs fibrinolytics and improved outcomes for fibrinolytics vs placebo

    Article  PubMed  Google Scholar 

  36. St Peter SD, Tsao K, Spilde TL, Keckler SJ, Harrison C, Jackson MA, et al. Thoracoscopic decortication vs tube thoracostomy with fibrinolysis for empyema in children: a prospective, randomized trial. J Pediatr Surg. 2009;44:106–11. discussion111

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sonnappa S. Urokinase and VATS are equally effective for septated empyema. J Pediatr. 2015;166:1320–1.

    Article  PubMed  Google Scholar 

  38. Sonnappa S, Cohen G, Owens CM, van Doorn C, Cairns J, Stanojevic S, et al. Comparison of urokinase and video-assisted thoracoscopic surgery for treatment of childhood empyema. Am J Respir Crit Care Med. 2006;174:221–7.

    Article  PubMed  Google Scholar 

  39. Marhuenda C, Barceló C, Fuentes I, Guillén G, Cano I, López M, et al. Urokinase versus VATS for treatment of empyema: a randomized multicenter clinical trial. Pediatrics. 2014;134:e1301–7.

    Article  PubMed  Google Scholar 

  40. Gasior AC, Knott EM, Sharp SW, Ostlie DJ, Holcomb GW, St Peter SD. Experience with an evidence-based protocol using fibrinolysis as first line treatment for empyema in children. J Pediatr Surg. 2013;48:1312–5.

    Article  PubMed  Google Scholar 

  41. Livingston MH, Colozza S, Vogt KN, Merritt N, Bütter A. Making the transition from video-assisted thoracoscopic surgery to chest tube with fibrinolytics for empyema in children: any change in outcomes? Can J Surg. 2016;59:167–71.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Livingston MH, Cohen E, Giglia L, Pirrello D, Mistry N, Mahant S, et al. Are some children with empyema at risk for treatment failure with fibrinolytics? A multicenter cohort study. J Pediatr Surg. 2016;51:832–7.

    Article  PubMed  Google Scholar 

  43. Richards MK, Mcateer JP, Edwards TC, Hoffman LR, Kronman MP, Shaw DW, et al. Establishing equipoise: national survey of the treatment of pediatric para-pneumonic effusion and empyema. Surg Infect (Larchmt). 2016:sur.2016.134.

  44. Upadhyaya P, Simpson JS. Splenic trauma in children. Surg Gynecol Obstet. 1968;126:781–90.

    CAS  PubMed  Google Scholar 

  45. Douglas GJ, Simpson JS. The conservative management of splenic trauma. J Pediatr Surg. 1971;6:565–70.

    Article  CAS  PubMed  Google Scholar 

  46. Holland AJ, McBride CA. Non-operative advances: what has happened in the last 50 years in paediatric surgery? J Paediatr Child Health. 2015;51:74–7.

    Article  PubMed  Google Scholar 

  47. Tan CE, Itinteang T, Leadbitter P, Marsh R, Tan ST. Low-dose propranolol regimen for infantile haemangioma. J Paediatr Child Health. 2015;51:419–24.

    PubMed  Google Scholar 

  48. Wilson BE, Cheney L, Patel B, Holland AJA. Appendicectomy at a children’s hospital: what has changed over a decade? ANZ J Surg. 2012;82:639–43.

    Article  PubMed  Google Scholar 

  49. Flum DR, Morris A, Koepsell T, Dellinger EP. Has misdiagnosis of appendicitis decreased over time? A population-based analysis. JAMA. 2001;286:1748–53.

    Article  CAS  PubMed  Google Scholar 

  50. St Peter SD, Aguayo P, Fraser JD, Keckler SJ, Sharp SW, Leys CM, et al. Initial laparoscopic appendectomy versus initial nonoperative management and interval appendectomy for perforated appendicitis with abscess: a prospective, randomized trial. J Pediatr Surg. 2010;45:236–40.

    Article  PubMed  Google Scholar 

  51. Lee SL, Islam S, Cassidy LD, Abdullah F, Arca MJ. 2010 American pediatric surgical association outcomes and clinical trials committee. Antibiotics and appendicitis in the pediatric population: an American pediatric surgical association outcomes and clinical trials committee systematic review. J Pediatr Surg. 2010;45:2181–5.

    Article  PubMed  Google Scholar 

  52. Svensson JF, Patkova B, Almström M, Naji H, Hall NJ, Eaton S, et al. Nonoperative treatment with antibiotics versus surgery for acute nonperforated appendicitis in children: a pilot randomized controlled trial. Ann Surg. 2015;261:67–71.

    Article  PubMed  Google Scholar 

  53. Tanaka Y, Uchida H, Kawashima H, Fujiogi M, Takazawa S, Deie K, et al. Long-term outcomes of operative versus nonoperative treatment for uncomplicated appendicitis. J Pediatr Surg. 2015;50:1893–7.

    Article  PubMed  Google Scholar 

  54. Minneci PC, Mahida JB, Lodwick DL, Sulkowski JP, Nacion KM, Cooper JN, et al. Effectiveness of patient choice in nonoperative vs surgical management of pediatric uncomplicated acute appendicitis. JAMA Surg. 2016;151:408–15.

    Article  PubMed  Google Scholar 

  55. Hartwich J, Luks FI, Watson-Smith D, Kurkchubasche AG, Muratore CS, Wills HE, et al. Nonoperative treatment of acute appendicitis in children: a feasibility study. J Pediatr Surg. 2016;51:111–6.

    Article  PubMed  Google Scholar 

  56. Gorter RR, van der Lee JH, Cense HA, Kneepkens CMF, Wijnen MHWA, In't Hof KH, et al. Initial antibiotic treatment for acute simple appendicitis in children is safe: short-term results from a multicenter, prospective cohort study. Surgery. 2015;157:916–23.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the advice on the accurate construction of the Latin dictum Primum quam minime nocere, meaning ‘firstly do as little harm (as possible)’, to Emeritus Professor Robert Milns AM, BA(Hons) Leeds, MA Camb, Hon.DLitt Qld and to Dr. John Ratcliffe, PhD(Classics) Qld, FRCSEd, FRCR. Honorary Research Fellow Qld.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A McBride.

Ethics declarations

Conflict of Interest

Craig A McBride and Bhaveshkumar Patel declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Surgical

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McBride, C.A., Patel, B. Less Is More: Recent Evolutions in Paediatric Surgery. Curr Pediatr Rep 5, 58–63 (2017). https://doi.org/10.1007/s40124-017-0127-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40124-017-0127-6

Keywords

Navigation