Skip to main content
Log in

Reliability-Based Slope Stability Analysis of Durgawati Earthen Dam Considering Steady and Transient State Seepage Conditions Using MARS and RVM

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

In this study, reliability analysis of slope failure of Durgawati earthen embankment has been performed using two different methods specifically multivariate adaptive regression splines (MARS) and relevance vector machine (RVM). Reliability index \((\beta )\) is calculated using both MARS and RVM under steady-state and transient-state seepage conditions. The analyses are performed for two different sections CH 21.0 and CH 22.0 at RD 640.09 m and RD 670.57 m, respectively. The Durgawati dam is situated in Kaimur district of Bihar, India. The FOS values of Durgawati earthen dam is calculated for using modified Bishop’s method for different seepage conditions, i.e., steady state and transient state. The seepage and slope failure analysis of Durgawati earthen dam is performed using SEEP-W and SLOPE-W modules of Geo-Studio 2007 software. The FOS values are calculated for these conditions for different realizations of the material parameters \((c,\varphi ,\gamma )\). After that, MARS and RVM have been applied to estimate the reliability index \((\beta )\) for the estimated FOS values for different realizations over the body of the dam. The computed reliability index \((\beta )\) under different situations indicates that the performance of the dam is satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: [41]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. El-Ramly H, Morgenstern NR, Cruden DM (2002) Probabilistic slope stability analysis for practice. Can Geotech J 39:665–683. https://doi.org/10.1139/t02-034

    Article  Google Scholar 

  2. Liang RY, Nusier OK, Malkawi AH (1999) A reliability based approach for evaluating the slope stability of embankment dams. Eng Geol. https://doi.org/10.1016/S0013-7952(99)00017-4

    Article  Google Scholar 

  3. Salgado R, Kim D (2014) Reliability analysis of load and resistance factor design of slopes. J Geotech Geoenviron Eng 140:57–73. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000978

    Article  Google Scholar 

  4. Roh G, Hong HP (2009) Calibration of information-sensitive partial factors for assessing earth slopes. J Geoengin. https://doi.org/10.6310/jog.2009.4(3).3

    Article  Google Scholar 

  5. Christian JT, Ladd CC, Baecher GB (1994) Reliability applied to slope stability analysis. J Geotech Eng. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2180)

    Article  Google Scholar 

  6. Li DQ, Jiang SH, Cao ZJ et al (2015) A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties. Eng Geol. https://doi.org/10.1016/j.enggeo.2014.12.003

    Article  Google Scholar 

  7. Griffiths DV, Fenton GA (2004) Probabilistic slope stability analysis by finite elements. J Geotech Geoenviron Eng 130:507–518. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:5(507)

    Article  Google Scholar 

  8. Griffiths DV, Huang J, Fenton GA (2009) Influence of spatial variability on slope reliability using 2-D random fields. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000099

    Article  Google Scholar 

  9. Ji J (2014) A simplified approach for modeling spatial variability of undrained shear strength in out-plane failure mode of earth embankment. Eng Geol. https://doi.org/10.1016/j.enggeo.2014.09.004

    Article  Google Scholar 

  10. Zeng P, Jimenez R (2014) An approximation to the reliability of series geotechnical systems using a linearization approach. Comput Geotech 62:304–309. https://doi.org/10.1016/j.compgeo.2014.08.007

    Article  Google Scholar 

  11. Hong HP, Roh G (2008) Reliability evaluation of earth slopes. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1700)

    Article  Google Scholar 

  12. Cho SE (2007) Effects of spatial variability of soil properties on slope stability. Eng Geol. https://doi.org/10.1016/j.enggeo.2007.03.006

    Article  Google Scholar 

  13. Suchomel R, Mašín D (2010) Comparison of different probabilistic methods for predicting stability of a slope in spatially variable c-φ soil. Comput Geotech. https://doi.org/10.1016/j.compgeo.2009.08.005

    Article  Google Scholar 

  14. Xue J-F, Gavin K (2007) Simultaneous determination of critical slip surface and reliability index for slopes. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(878)

    Article  Google Scholar 

  15. Duncan JM (2000) Factors of Safety and Reliability in Geotechnical Engineering. J Geotech Geoenviron Eng 126:307–316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307)

    Article  Google Scholar 

  16. Tang XS, Li DQ, Zhou CB, Phoon KK (2015) Copula-based approaches for evaluating slope reliability under incomplete probability information. Struct Saf. https://doi.org/10.1016/j.strusafe.2014.09.007

    Article  Google Scholar 

  17. Hsu S, Nelson PP (2006) Material spatial variability and slope stability for weak rock masses. J Geotech Geoenviron Eng 132:183–193. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(183)

    Article  Google Scholar 

  18. El-Ramly H, Morgenstern NR, Cruden DM (2005) Probabilistic assessment of stability of a cut slope in residual soil. Géotechnique. https://doi.org/10.1680/geot.2005.55.1.77

    Article  Google Scholar 

  19. Jiang S-H, Li D-Q, Cao Z-J et al (2014) Efficient system reliability analysis of slope stability in spatially variable soils using Monte Carlo simulation. J Geotech Geoenviron Eng. https://doi.org/10.1061/(asce)gt.1943-5606.0001227

    Article  Google Scholar 

  20. Jiang S-H, Huang J-S (2016) Efficient slope reliability analysis at low-probability levels in spatially variable soils. Comput Geotech 75:18–27. https://doi.org/10.1016/j.compgeo.2016.01.016

    Article  Google Scholar 

  21. Fellenius W (1936) Calculation of stability of earth dams. Proc Second Congr large dams 4:445–463

    Google Scholar 

  22. Bishop AW (1955) The use of the slip circle in the stability analysis of slopes. Géotechnique 5:7–17. https://doi.org/10.1680/geot.1955.5.1.7

    Article  Google Scholar 

  23. Morgenstern NR, Price VE (1965) The analysis of the stability of general slip surfaces. Géotechnique. https://doi.org/10.1680/geot.1965.15.1.79

    Article  Google Scholar 

  24. Wu TH, Kraft LM (1970) Safety analysis of slopes. J Soil Mech Found Div ASCE 96:609–630

    Google Scholar 

  25. Alonso EE (1977) Discussion: risk analysis of slopes and its application to slopes in Canadian sensitive clays. Géotechnique 27:254–258. https://doi.org/10.1680/geot.1977.27.2.254

    Article  Google Scholar 

  26. Husein Malkawi AI, Hassan WF, Abdulla FA (2000) Uncertainty and reliability analysis applied to slope stability. Struct Saf 22:161–187. https://doi.org/10.1016/S0167-4730(00)00006-0

    Article  Google Scholar 

  27. Wong FS (1985) Slope reliability and response surface method. J Geotech Eng 111:32–53. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:1(32)

    Article  Google Scholar 

  28. Faravelli L (1989) Response-surface approach for reliability analysis. J Eng Mech 115:2763–2781. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:12(2763)

    Article  Google Scholar 

  29. Bucher CG, Bourgund U (1990) A fast and efficient response surface approach for structural reliability problems. Struct Saf. https://doi.org/10.1016/0167-4730(90)90012-E

    Article  Google Scholar 

  30. Guan XL, Melchers RE (1997) Multitangent-plane surface method for reliability calculation. J Eng Mech 123:996–1002. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:10(996)

    Article  Google Scholar 

  31. Friedman JH (1991) Rejoinder: multivariate adaptive regression splines. Ann Stat. https://doi.org/10.1214/aos/1176347973

    Article  MATH  Google Scholar 

  32. Zhang WG, Goh ATC (2013) Multivariate adaptive regression splines for analysis of geotechnical engineering systems. Comput Geotech 48:82–95. https://doi.org/10.1016/j.compgeo.2012.09.016

    Article  Google Scholar 

  33. Liu LL, Cheng YM (2016) Efficient system reliability analysis of soil slopes using multivariate adaptive regression splines-based Monte Carlo simulation. Comput Geotech. https://doi.org/10.1016/j.compgeo.2016.05.001

    Article  Google Scholar 

  34. Samui P (2013) Multivariate adaptive regression spline (mars) for prediction of elastic modulus of jointed rock mass. Geotech Geol Eng 31:249–253. https://doi.org/10.1007/s10706-012-9584-4

    Article  Google Scholar 

  35. Metya S, Mukhopadhyay T, Adhikari S, Bhattacharya G (2017) System reliability analysis of soil slopes with general slip surfaces using multivariate adaptive regression splines. Comput Geotech. https://doi.org/10.1016/j.compgeo.2017.02.017

    Article  Google Scholar 

  36. Liu L, Zhang S, Cheng YM, Liang L (2019) Advanced reliability analysis of slopes in spatially variable soils using multivariate adaptive regression splines. Geosci Front. https://doi.org/10.1016/j.gsf.2018.03.013

    Article  Google Scholar 

  37. Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res. https://doi.org/10.1162/15324430152748236

    Article  MathSciNet  MATH  Google Scholar 

  38. Samui P, Lansivaara T, Kim D (2011) Utilization relevance vector machine for slope reliability analysis. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2011.03.009

    Article  Google Scholar 

  39. Ji J, Zhang C, Gui Y et al (2017) New observations on the application of LS-SVM in slope system reliability analysis. J Comput Civ Eng 31:06016002. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000620

    Article  Google Scholar 

  40. Li S, Zhao H, Ru Z (2017) Relevance vector machine-based response surface for slope reliability analysis. Int J Numer Anal Methods Geomech 41:1332–1346. https://doi.org/10.1002/nag.2683

    Article  Google Scholar 

  41. Himanshu N, Burman A (2017) Seepage and stability analysis of Durgawati earthen dam: a case study. Indian Geotech J. https://doi.org/10.1007/s40098-017-0283-1

    Article  Google Scholar 

  42. Samui P, Dixon B (2012) Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs. Hydrol Process 26:1361–1369. https://doi.org/10.1002/hyp.8278

    Article  Google Scholar 

  43. Zhao H, Yin S, Ru Z (2012) Relevance vector machine applied to slope stability analysis. Int J Numer Anal Methods Geomech. https://doi.org/10.1002/nag.1037

    Article  Google Scholar 

  44. MacKay DJC (1992) Bayesian interpolation. Neural Comput 4:415–447. https://doi.org/10.1162/neco.1992.4.3.415

    Article  MATH  Google Scholar 

  45. Wahba G (1985) A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann Stat 13:1378–1402. https://doi.org/10.1214/aos/1176349743

    Article  MathSciNet  MATH  Google Scholar 

  46. Ghosh M, Berger J (1988) Stastical decision theory and bayesian analysis. J Am Stat Assoc 83:266. https://doi.org/10.2307/2288950

    Article  Google Scholar 

  47. Lee IK, White W, Ingles OG (1983) Soil Variability. In: Geotechnical engineering

  48. Harr ME (1987) Reliability-based design in civil engineering. McGraw-Hill, New York

    Google Scholar 

  49. Baecher GB, Christian JT (2003) Reliability and statistics in geotechnical engineering. Wiley, West Sussex

    Google Scholar 

  50. Wang W-C, Chau K-W, Cheng C-T, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374:294–306. https://doi.org/10.1016/j.jhydrol.2009.06.019

    Article  Google Scholar 

  51. Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2005) Short-term flood forecasting with a neurofuzzy model. Water Resour Res. https://doi.org/10.1029/2004WR003562

    Article  Google Scholar 

  52. Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17:61–72. https://doi.org/10.1016/j.engappai.2003.11.006

    Article  Google Scholar 

  53. Ceryan N, Okkan U, Kesimal A (2013) Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ Earth Sci 68:807–819. https://doi.org/10.1007/s12665-012-1783-z

    Article  Google Scholar 

  54. Yagiz S, Sezer EA, Gokceoglu C (2012) Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int J Numer Anal Methods Geomech. https://doi.org/10.1002/nag.1066

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avijit Burman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Samui, P., Himanshu, N. et al. Reliability-Based Slope Stability Analysis of Durgawati Earthen Dam Considering Steady and Transient State Seepage Conditions Using MARS and RVM. Indian Geotech J 49, 650–666 (2019). https://doi.org/10.1007/s40098-019-00373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-019-00373-7

Keywords

Navigation