Skip to main content
Log in

Behaviour of Partially Saturated Soil Under Isotropic and Triaxial Condition Using Modified BBM

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

How suction influence the shear strength of partially saturated soil is one of the important challenges in many geotechnical problems. As compared to saturated soil, the triaxial compression stress path for partially saturated soil is more complex. In the present study a single element finite element model has been developed and implemented in FORTRAN code. An explicit integration algorithm is adapted to Barcelona basic model with some modification considering locus of apparent tensile strength in the p′–s plane as non-linear, anisotropy to the yield surface and dependence of degree of saturation on volumetric strain. The performance of the code is examined and verified with suction controlled triaxial experimental results. Application of isotropic compression, wetting and triaxial compression stress path on model demonstrated significant influence of stress paths on strength and deformation behaviour of partially saturated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alonso EE, Gens A, Hight DW (1987) Special problem soils. General report. In: Proceedings of the 9th European conference on soil mechanics and foundation engineering, vol 3, Dublin, pp 1087–1146

  2. Alonso EE, Gens A, Josa A (1990) Constitutive model for partially saturated soils. Géotechnique 40(3):405–430

    Article  Google Scholar 

  3. Gens A (1996) Constitutive modelling: application to compacted soils. In: Proceedings of the first international conference on unsaturated soils, 6–8 September 1996, Balkema, Rotterdam, pp 1179–1200

  4. Gens A, Sánchez M, Sheng D (2006) On constitutive modelling of unsaturated soils. Acta Geotech 1(3):137–147

    Article  Google Scholar 

  5. Jommi C (2000) Remarks on the constitutive modelling of unsaturated soils. In: Tarantino A, Mancuso C (eds) Experimental evidence and theoretical approaches in unsaturated soils. Balkema, Rotterdam, pp 139–153

    Google Scholar 

  6. Sheng D (2011) Review of fundamental principles in modelling unsaturated soil behaviour. Comput Geotech 38(6):757–776

    Article  Google Scholar 

  7. Sheng D, Gens A, Fredlund DG, Sloan SW (2008) Unsaturated soils: from constitutive modelling to numerical algorithms. Comput Geotech 35(6):810–824

    Article  Google Scholar 

  8. Wheeler SJ, Karube D (1996) Constitutive modelling. In: Proceedings of the first international conference on unsaturated soils, 6–8 September 1996, Paris, France, pp 1323–1356

  9. Wheeler SJ, Sivakumar V (1995) An elasto-plastic critical state framework for unsaturated soil. Géotechnique 45(1):35–53

    Article  Google Scholar 

  10. Sheng D, Sloan SW, Gens AA (2004) Constitutive model for unsaturated soils: thermomechanical and computational aspects. Comput Mech 33(6):453–465

    Article  MATH  Google Scholar 

  11. Sun DA, Sheng DC (2005) An elastoplastic hydro-mechanical model for unsaturated compacted soils. In: Proceedings of the international symposium on advanced experimental unsaturated soil Mechanics, 27–29 June 2005, Trento, Italy, pp 249–255

  12. Vaunat J, Romero E, Jommi C (2000) An elastoplastic hydromechanical model for unsaturated soils. In: Proceedings of international workshop on unsaturated soils, 10–12 April 2000, Trento, Italy, pp 121–138

  13. Wheeler SJ, Sharma RS, Buisson MSR (2003) Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils. Geotechnique 53(1):41–54

    Article  Google Scholar 

  14. Georgiadis K (2003) Development, implementation and application of partially saturated soil models in finite element analysis. Dissertation, Imperial College

  15. Escario V, Juca JF, Coppe MS (1989) Strength and deformation of partly saturated soils. In: Proceedings of the international conference on soil mechanics and foundation engineering, 13 August 1989, Rio de Janeiro, pp 43–46

  16. Gan JK, Fredlund DG (1996) Shear strength characteristics of two saprolitic soils. Can Geotech J 33(4):595–609

    Article  Google Scholar 

  17. Hoyos LR, Pérez-Ruiz DD, Puppala AJ (2012) Refined true triaxial apparatus for testing unsaturated soils under suction-controlled stress paths. Int J Geomech 12(3):281–291

    Article  Google Scholar 

  18. Cui YJ, Delage P (1996) Yielding and plastic behaviour of an unsaturated compacted silt. Géotechnique 46(2):291–311

    Article  Google Scholar 

  19. Wheeler SJ, Näätänen A, Karstunen M, Lojander M (2003) An anisotropic elastoplastic model for soft clays. Can Geotech J 40(2):403–418

    Article  Google Scholar 

  20. Stropeit K, Wheeler SJ, Cui YJ (2008) An anisotropic elasto-plastic model for unsaturated soils. In: Proceedings of 1st European conference of unsaturated soil, Durham, Balkema, pp 625–632

  21. D’Onza F, Gallipoli D, Wheeler SJ (2010) Effect of anisotropy on the prediction of unsaturated soil response under triaxial and oedometric conditions. In: Proceedings 5th international conference on unsaturated soils, 6–8 September 2010, Barcelona, Spain, pp 787–794

  22. Sheng D, Zhou AN (2011) Coupling hydraulic with mechanical models for unsaturated soils. Can Geotech J 48(5):826–840

    Article  Google Scholar 

  23. Brooks RH, Corey AT (1964) Hydraulic properties of porous media and their relation to drainage design. Trans ASAE 7(1):26–28

    Article  Google Scholar 

  24. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898

    Article  Google Scholar 

  25. Wheeler SJ, Gallipoli D, Karstunen M (2002) Comments on use of the Barcelona Basic Model for unsaturated soils. Int J Numer Anal Meth Geomech 26(15):1561–1571

    Article  MATH  Google Scholar 

  26. Gallipoli D, D’Onza F, Wheeler SJ (2010) A sequential method for selecting parameter values in the Barcelona basic model. Can Geotech J 47(11):1175–1186

    Article  Google Scholar 

  27. Sánchez M, Gens A, do Nascimento Guimarães L, Olivella S (2005) A double structure generalized plasticity model for expansive materials. Int J Numer Anal Meth Geomech 29(8):751–787

    Article  MATH  Google Scholar 

  28. Sivakumar V (1993) A critical state framework for unsaturated soil. Dissertation, University of Sheffield

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwas A. Sawant.

Appendices

Appendix 1: Flowchart

Flow chart for the calculation of the stress and plastic strain increments and the changes in hardening parameters.

figure afigure a

Appendix 2: Incremental Stress Strain Relation

The total strains takes the form along with flow rule:

$$\begin{aligned} {\text{d}}{\varvec{\upvarepsilon}} & = {\text{d}}{\varvec{\upvarepsilon}}^{\text{e}} + {\text{d}}{\varvec{\upvarepsilon}}^{\text{p}} + {\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{e}} + {\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{p}} \\ & = {\text{d}}{\varvec{\upvarepsilon}}^{\text{e}} + \delta \chi \frac{\partial g}{\partial \sigma } + {\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{e}} + {\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{p}} \\ \end{aligned}$$
(15)

where \({\text{d}}{\varvec{\upvarepsilon}}^{\text{e}}\) is the elastic strain due to change in net stress, \({\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{e}}\) and \({\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{p}}\) are the elastic and plastic strain due to change in suction and \(\delta_{\chi }\) is the plastic multiplier (flow rule).

$${\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{e}} = \frac{{\kappa_{s} }}{{\nu (s + p_{\text{atm}} )}}{\text{d}}s$$
(16)
$${\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{e}} = \left\{ {\begin{array}{*{20}l} {\frac{{\lambda_{s} - \kappa_{s} }}{{\nu (s + p_{\text{atm}} )}}} \hfill & {{\text{if}}\,{\text{suction}}\,{\text{increase}}\,{\text{yield}}\,{\text{surface}}\,{\text{is}}\,{\text{active}}} \hfill \\ 0 \hfill & {{\text{if}}\,{\text{suction}}\,{\text{increase}}\,{\text{yield}}\,{\text{surface}}\,{\text{is}}\,{\text{not}}\,{\text{active}}} \hfill \\ \end{array} } \right.$$
(17)

The elastic strain and net stress change take the form:

$${\text{d}}{\varvec{\upsigma}} = {\mathbf{D}}^{\text{e}} {\text{d}}{\varvec{\upvarepsilon}}^{\text{e}}$$
(18)

where D e is the elastic constitutive matrix.

Combining Eqs. 15 and 16:

$${\text{d}}{\varvec{\upsigma}} = {\mathbf{D}}^{\text{e}} \left( {{\text{d}}{\varvec{\upvarepsilon}} - \delta \chi \frac{\partial g}{\partial \sigma } - {\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{e}} - {\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{p}} } \right)$$
(19)

The consistency condition for partially saturated soils can be written as:

$$\begin{aligned} {\text{d}}f & = \left( {\frac{\partial f}{{\partial {\varvec{\upsigma}}}}} \right)^{\text{T}} {\text{d}}{\varvec{\upsigma}} + \frac{\partial f}{\partial s}{\text{d}}s + \frac{\partial f}{{\partial \varepsilon_{\text{v}}^{\text{p}} }}{\text{d}}\varepsilon_{\text{v}}^{\text{p}} = 0 \\ & = \left( {\frac{\partial f}{{\partial {\varvec{\upsigma}}}}} \right)^{\text{T}} {\text{d}}{\varvec{\upsigma}} + \frac{\partial f}{{\partial p_{\text{mc}} }}\frac{{\partial p_{\text{mc}} }}{\partial s}{\text{d}}s + \frac{\partial f}{{\partial p_{s} }}\frac{{\partial p_{s} }}{\partial s}{\text{d}}s + \frac{\partial f}{{\partial p_{\text{mc}} }}\frac{{\partial p_{\text{mc}} }}{{\partial \varepsilon_{\text{v}}^{\text{p}} }}{\text{d}}\varepsilon_{\text{v}}^{\text{p}} = 0 \\ \end{aligned}$$
(20)

The plastic multiplier can be solved by combining Eqs. 17 and 18

$$\delta \chi = \frac{{\left( {\frac{\partial f}{{\partial {\varvec{\upsigma}}}}} \right)^{\text{T}} {\mathbf{D}}^{\text{e}} \left( {{\text{d}}{\varvec{\upvarepsilon}} - {\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{e}} - {\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{p}} } \right) + \left( {\frac{\partial f}{{\partial p_{\text{mc}} }}\frac{{\partial p_{\text{mc}} }}{\partial s} + \frac{\partial f}{{\partial p_{s} }}\frac{{\partial p_{s} }}{\partial s}} \right){\text{d}}s}}{{\left( {\frac{\partial f}{{\partial {\varvec{\upsigma}}}}} \right)^{\text{T}} {\mathbf{D}}^{\text{e}} \frac{\partial g}{{\partial {\varvec{\upsigma}}}} + H}}$$
(21)

where

$$H = - \frac{\partial f}{{\partial p_{\text{mc}} }}\frac{{\partial p_{\text{mc}} }}{{\partial \varepsilon_{\text{v}}^{\text{p}} }}\frac{\partial g}{{\partial p^{{\prime }} }}$$
(22)

Plastic volumetric and shear strain due to stress change may be calculate as:

$$d\varepsilon_{v}^{p} = \delta \chi \frac{\partial g}{{\partial p^{{\prime }} }}\quad \& \quad d\varepsilon_{s}^{p} = \delta \chi \frac{\partial g}{\partial q}$$
(23)

Substituting Eq. 21 into Eq. 19 gives:

$${\text{d}}{\varvec{\upsigma}} = {\mathbf{D}}^{\text{ep}} \left( {{\text{d}}{\varvec{\upvarepsilon}} - {\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{e}} - {\text{d}}{\varvec{\upvarepsilon}}_{s}^{\text{p}} } \right) - {\mathbf{W}}{\text{d}}s$$
(24)

where

$${\mathbf{D}}^{\text{ep}} = {\mathbf{D}}^{\text{e}} - \frac{{{\mathbf{D}}^{\text{e}} \frac{\partial g}{{\partial {\varvec{\upsigma}}}}\left( {\frac{\partial f}{{\partial {\varvec{\upsigma}}}}} \right)^{\text{T}} {\mathbf{D}}^{\text{e}} }}{{\left( {\frac{\partial f}{{\partial {\varvec{\upsigma}}}}} \right)^{\text{T}} {\mathbf{D}}^{\text{e}} \frac{\partial g}{{\partial {\varvec{\upsigma}}}} + H}}$$
(25)

is the elasto-plastic constitutive matrix for the case of fully saturated soil, and

$${\mathbf{W}} = \frac{{{\mathbf{D}}^{\text{e}} \frac{\partial g}{{\partial {\varvec{\upsigma}}}}\left( {\frac{\partial f}{\partial s}} \right)^{\text{T}} }}{{\left( {\frac{\partial f}{{\partial {\varvec{\upsigma}}}}} \right)^{\text{T}} {\mathbf{D}}^{\text{e}} \frac{\partial g}{{\partial {\varvec{\upsigma}}}} + H}}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehndiratta, S., Sawant, V.A. Behaviour of Partially Saturated Soil Under Isotropic and Triaxial Condition Using Modified BBM. Indian Geotech J 47, 219–232 (2017). https://doi.org/10.1007/s40098-017-0231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-017-0231-0

Keywords

Navigation