Skip to main content

Advertisement

Log in

Celosia argentea leaf extract-mediated green synthesized iron oxide nanoparticles for bio-applications

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Biosynthesis is an important method for synthesizing nanoparticles at low cost, also they should be environmentally friendly, with tunable properties, and should possess potency applications than the synthetic method. The iron oxide nanoparticles were efficiently biosynthesized using the leaf extract of Celosia argentea. The phytochemicals in Celosia argentea leaves’ extract were analyzed. The synthesized nanoparticles were characterized for knowing their structural, elemental, and optical properties using analytical techniques. The obtained results confirmed the formation of iron oxide nanoparticles with SPR band at 299 nm in high crystalline nature. The Fe–O bonding was validated. The particles formed in spherical shape with 5–10 nm size. The Fe and O occurrence was further confirmed from Fe and O spots in the mapping spectrum. The bioactive medicinal property of synthesized iron oxide nanoparticles was known from biofilm activity, antioxidant, anti-inflammatory, anti-diabetic, and larvicidal activities. The antibacterial activity which is depicted by the high zone of inhibition was observed at 19 mm (E. coli) and 25 mm (S. aureus) with 150 μg/mL concentration. At 150 μg/mL concentration, a higher inhibition rate was observed for biofilm activity. A higher activity was unveiled at 97% in 80 μg/mL concentration for antioxidant activity. The high activity was obtained at 93% and 87% in 500 μg/mL concentration for anti-inflammatory and anti-diabetic activities, respectively. An increased level of death rate of Anopheles subpictus, larvae were incurred at 24 h in 100 ppm and 48 h in 80 and 100 ppm. In MTT analysis, the high inhibition of 86% was achieved at 50 μg/mL concentration. Thus, all these results convey that the synthesized iron oxide nanoparticles may be utilized as antibiotic drugs and pesticides.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vinayagam, R., Pai, S., Varadavenkatesan, T., Narasimhan, M.K., Narayanasamy, S., Selvaraj, R.: Structural characterization of green synthesized α-Fe2O3 nanoparticles using the leaf extract of Spondias dulcis. Surf. Interfaces. 20, 100618 (2020)

    Article  CAS  Google Scholar 

  2. Nasrollahzadeh, M., Sajadi, S.M., Sajjadi, M., Issaabadi, Z.: Applications of nanotechnology in daily life. Interface Sci. Technol. 28, 113–143 (2019)

    Article  CAS  Google Scholar 

  3. Cao, Y., Gu, J., Wang, S., Zhang, Z., Yu, H., Li, J., Chen, S.: Guanidine-functionalized cotton fabrics for achieving permanent antibacterial activity without compromising their physicochemical properties and cytocompatibility. Cellulose 27(10), 6027–6036 (2020)

    Article  CAS  Google Scholar 

  4. Ansari, S.A., Khan, M.M., Ansari, M.O., Lee, J., Cho, M.H.: Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite. J. Phys. Chem. C. 117(51), 27023–27030 (2013)

    Article  CAS  Google Scholar 

  5. Mao, C., Xiang, Y., Liu, X., Cui, Z., Yang, X., Yeung, K.W.K., Pan, H., Wang, X., Chu, P.K., Wu, S.: Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@ AgCl/ZnO nanostructures. ACS Nano 11(9), 9010–9021 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. Mohamed, H.E.A., Afridi, S., Khalil, A.T., Ali, M., Zohra, T., Salman, M., Ikram, A., Shinwari, Z.K., Maaza, M.: Bio-redox potential of Hyphaene thebaica in bio-fabrication of ultrafine maghemite phase iron oxide nanoparticles (Fe2O3 NPs) for therapeutic applications. Mater. Sci. Eng. C. 112, 110890 (2020)

    Article  CAS  Google Scholar 

  7. Rostamizadeh, E., Iranbakhsh, A., Majd, A., Arbabian, S., Mehregan, I.: Green synthesis of Fe2O3 nanoparticles using fruit extract of Cornus mas L. and its growth-promoting roles in Barley. J. Nanostruct. Chem. 10, 125–130 (2020)

    Article  CAS  Google Scholar 

  8. Velsankar, K., Sudhahar, S., Parvathy, G., Kaliammal, R.: Effect of cytotoxicity and Antibacterial activity of biosynthesis of ZnO hexagonal shaped nanoparticles by Echinochloa frumentacea grains extract as a reducing agent. Mater. Chem. Phys. 239, 121976 (2020)

    Article  CAS  Google Scholar 

  9. Muthukumar, H., Matheswaran, M.: Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity. ACS Sustain. Chem. Eng. 3(12), 3149–3156 (2015)

    Article  CAS  Google Scholar 

  10. Li, M., Zhang, P., Adeel, M., Guo, Z., Chetwynd, A.J., Ma, C., Bai, T., Hao, Y., Rui, Y.: Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ. Pollut. 269, 116134 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. Vinotha, V., Yazhiniprabha, M., Raj, D.S., Mahboob, S., Al-Ghanim, K.A., Al-Misned, F., Vaseeharan, B.: Biogenic synthesis of aromatic cardamom-wrapped zinc oxide nanoparticles and their potential antibacterial and mosquito larvicidal activity: An effective eco-friendly approach. J. Environ. Chem. Eng. 8(6), 104466 (2020)

    Article  CAS  Google Scholar 

  12. Khatami, M., Sharifi, I., Nobre, M.A., Zafarnia, N., Aflatoonian, M.R.: Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chem. Lett. Rev. 11(2), 125–134 (2018)

    Article  CAS  Google Scholar 

  13. Hasan, M., Zafar, A., Shahzadi, I., Luo, F., Hassan, S.G., Tariq, T., Zehra, S., Munawar, T., Iqbal, F., Shu, X.: Fractionation of Biomolecules in Withania coagulans Extract for Bioreductive Nanoparticle Synthesis. Antifungal Biofilm Act. Mol. 25(15), 3478 (2020)

    CAS  Google Scholar 

  14. Hasan, M., Altaf, M., Zafar, A., Hassan, S.G., Ali, Z., Mustafa, G., Munawar, T., Saif, M.S., Tariq, T., Iqbal, F., Khan, M.W., Mahmood, A., Mahmood, N., Shu, X.: Bioinspired synthesis of zinc oxide nano-flowers: A surface enhanced antibacterial and harvesting efficiency. Mater. Sci. Eng. C. 119, 111280 (2021)

    Article  CAS  Google Scholar 

  15. Jamzad, M., Bidkorpeh, M.K.: Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. J. Nanostruct. Chem. 10(3), 193–201 (2020)

    Article  CAS  Google Scholar 

  16. Sulaiman, G.M., Tawfeeq, A.T., Naji, A.S.: Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif. Cells Nanomed. Biotechnol. 46(6), 1215–1229 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. Nagajyothi, P.C., Pandurangan, M., Kim, D.H., Sreekanth, T.V.M., Shim, J.: Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities. J. Clust. Sci. 28(1), 245–257 (2017)

    Article  CAS  Google Scholar 

  18. Devi, H.S., Boda, M.A., Shah, M.A., Parveen, S., Wani, A.H.: Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process. Synth. 8(1), 38–45 (2019)

    Article  CAS  Google Scholar 

  19. Ramalingam, V., Dhinesh, P., Sundaramahalingam, S., Rajaram, R.: Green fabrication of iron oxide nanoparticles using grey mangrove Avicennia marina for antibiofilm activity and in vitro toxicity. Surf. Interfaces. 15, 70–77 (2019)

    Article  CAS  Google Scholar 

  20. Karnan, P., Anbarasu, A., Deepa, N., Usha, R.: Green biosynthesis of magnetic iron oxide nanoparticles of vitex negundo aqueous extract. Int. J. Curr. Pharm. Res. 10(3), 11–14 (2018)

    Article  CAS  Google Scholar 

  21. Beheshtkhoo, N., Kouhbanani, M.A.J., Savardashtaki, A., Amani, A.M., Taghizadeh, S.: Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl. Phys. A. 124(5), 1–7 (2018)

    Article  CAS  Google Scholar 

  22. Martínez-Cabanas, M., López-García, M., Barriada, J.L., Herrero, R., de Vicente, M.E.S.: Green synthesis of iron oxide nanoparticles, Development of magnetic hybrid materials for efficient As (V) removal. Chem. Eng. J. 301, 83–91 (2016)

    Article  CAS  Google Scholar 

  23. Jegadeesan, G.B., Srimathi, K., Srinivas, N.S., Manishkanna, S., Vignesh, D.: Green synthesis of iron oxide nanoparticles using Terminalia bellirica and Moringa oleifera fruit and leaf extracts: Antioxidant, antibacterial and thermoacoustic properties. Biocatal. Agric. Biotechnol. 21, 101354 (2019)

    Article  Google Scholar 

  24. Patiño-Ruiz, D., Sánchez-Botero, L., Tejeda-Benitez, L., Hinestroza, J., Herrera, A.: Green synthesis of iron oxide nanoparticles using Cymbopogon citratus extract and sodium carbonate salt: nanotoxicological considerations for potential environmental applications. Environ. Nanotechnol. Monit. Manag. 14, 100377 (2020)

    Google Scholar 

  25. Qasim, S., Zafar, A., Saif, M.S., Ali, Z., Nazar, M., Waqas, M., Haq, A.U., Tariq, T., Hassan, S.G., Iqbal, F., Shu, X., Hasan, M.: Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. J. Photochem. Photobiol. B. 204, 111784 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. Vaishnav, J., Subha, V., Kirubanandan, S., Arulmozhi, M., Renganathan, S.: Green synthesis of zinc oxide nanoparticles by Celosia argentea and its characterization. J. Optoelectron. Biomed. 9, 59–71 (2017)

    Google Scholar 

  27. Manokari, M., Ravindran, C.P., Shekhawat, M.S.: Biosynthesis and characterization of zinc oxide nanoparticles using plant extracts of Peperomia pellucida L. and Celosia argentea L. Int. J. Bot. Stud. 1(2), 32–37 (2016)

    Google Scholar 

  28. Velsankar, K., Vinothini, V., Sudhahar, S., Krishna Kumar, M., Mohandoss, S.: Green synthesis of CuO nanoparticles via Plectranthus amboinicus leaves extract with its characterization on structural, morphological, and biological properties. Appl. Nanosci. 10(10), 3953–3971 (2020)

    Article  CAS  Google Scholar 

  29. Awoyinka, O.A., Balogun, I.O., Ogunnow, A.A.: Phytochemical screening and in vitro bioactivity of Cnidoscolus aconitifolius (Euphorbiaceae). J. Med. Plant Res. 1, 63–95 (2007)

    Google Scholar 

  30. Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T.: Antioxidative properties of xanthum on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40, 945–948 (1992)

    Article  CAS  Google Scholar 

  31. Chandra, S., Chatterjee, P., Dey, P., Bhattacharya, S.: Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed. 2(1), S178–S180 (2012)

    Article  Google Scholar 

  32. Yousefi, A., Yousefi, R., Panahi, F., Sarikhani, S., Zolghadr, A.R., Bahaoddini, A., Khalafi-Nezhad, A.: Novel curcumin-based pyrano [2, 3-d] pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: Implications for their pleiotropic effects against diabetes complication. Int. J. Biol. Macromol. 78, 46–55 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. Kamaraj, C., Bagavan, A., Rahuman, A.A., Zahir, A.A., Elango, G., Pandiyan, G.: Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol. Res. 104(5), 1163 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65(1–2), 55–63 (1983)

    Article  CAS  PubMed  Google Scholar 

  35. Monga, J., Pandit, S., Chauhan, C.S., Sharma, M.: Cytotoxicity and apoptosis induction in human breast adenocarcinoma MCF-7 cells by (+)-cyanidan-3-ol. Exp. Toxicol. Pathol. 65(7–8), 1091–1100 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. Karpagavinayagam, P., Vedhi, C.: Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum 160, 286–292 (2019)

    Article  CAS  Google Scholar 

  37. Kanagasubbulakshmi, S., Kadirvelu, K.: Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def. Life Sci. J. 2(4), 422–427 (2017)

    Article  Google Scholar 

  38. Velsankar, K., Sudhahar, S., Maheshwaran, G., Krishna Kumar, M.: Effect of biosynthesis of ZnO nanoparticles via Cucurbita seed extract on Culex tritaeniorhynchus mosquito larvae with its biological applications. J. Photochem. Photobiol. B. 200, 111650 (2019)

    Article  CAS  Google Scholar 

  39. Bhuiyan, M.S.H., Miah, M.Y., Paul, S.C., Aka, T.D., Saha, O., Rahaman, M.M., Sharif, M.J.I., Habiba, O., Ashaduzzaman, M.: Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon. 6(8), e04603 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  40. Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., Manivannan, G.: Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine 7(2), 184–192 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. Sangeetha, G., Rajeshwari, S., Venckatesh, R.: Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: Structure and optical properties. Mater. Res. Bull. 46(12), 2560–2566 (2011)

    Article  CAS  Google Scholar 

  42. Van Nhan, L., Ma, C., Rui, Y., Cao, W., Deng, Y., Liu, L., Xing, B.: The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-transgenic cotton. Front. Plant Sci. 6, 1263 (2016)

    PubMed  PubMed Central  Google Scholar 

  43. Zulfiqar, H., Zafar, A., Rasheed, M.N., Ali, Z., Mehmood, K., Mazher, A., Hasan, M., Mahmood, N.: Synthesis of silver nanoparticles using Fagonia cretica and their antimicrobial activities. Nanoscale Adv. 1(5), 1707–1713 (2019)

    Article  CAS  Google Scholar 

  44. Hasan, M., Teng, Z., Iqbal, J., Awan, U., Meng, S., Dai, R., Qing, H., Deng, Y.: Assessment of bioreducing and stabilizing potential of Dragon’s blood (Dracaena cochinchinensis, Lour. SC Chen) resin extract in synthesis of silver nanoparticles. Nanosci. Nanotechnol. Lett. 5(7), 780–784 (2013)

    Article  CAS  Google Scholar 

  45. Velsankar, K., Preethi, R., Jeevan Ram, P.S., Ramesh, M., Sudhahar, S.: Evaluations of biosynthesized Ag nanoparticles via Allium Sativum flower extract in biological applications. Appl. Nanosci. 10, 3675–3691 (2020)

    Article  CAS  Google Scholar 

  46. Sivakami, M., Renuka Devi, K., Renuka, R., Thilagavathi, T.: Green synthesis of magnetic nanoparticles via Cinnamomum verum bark extract for biological application. J. Environ. Chem. Eng. 8(5), 104420 (2020)

    Article  CAS  Google Scholar 

  47. Velsankar, K., Aswin Kumar, R.M., Preethi, R., Muthulakshmi, V., Sudhahar, S.: Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. J. Environ. Chem. Eng. 8(5), 104123 (2020)

    Article  CAS  Google Scholar 

  48. Arasu, M.V., Arokiyaraj, S., Viayaraghavan, P., Kumar, T.S.J., Duraipandiyan, V., Al-Dhabi, N.A., Kaviyarasu, K.: One step green synthesis of larvicidal, and azo dye degrading antibacterial nanoparticles by response surface methodology. J. Photochem. Photobiol. B. 190, 154–162 (2019)

    Article  CAS  PubMed  Google Scholar 

  49. Murugan, K., Dinesh, D., Nataraj, D., Subramaniam, J., Amuthavalli, P., Madhavan, J., Rajasekar, A., Rajan, M., Thiruppathi, K.P., Kumar, S., Higuchi, A., Nicoletti, M., Benelli, G.: Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environ. Sci. Pollut. Res. 25(11), 10504–10514 (2018)

    Article  CAS  Google Scholar 

  50. Saranya, S., Vijayaranai, K., Pavithra, S., Raihana, N., Kumanan, K.: In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis. Toxicol. Rep. 4, 427–430 (2017)

    Article  CAS  Google Scholar 

  51. Sandhya, J., Kalaiselvam, S.: Biogenic synthesis of magnetic iron oxide nanoparticles using inedible Borassus flabellifer seed coat: Characterization, antimicrobial, antioxidant activity and in vitro cytotoxicity analysis. Mater. Res. Express. 7(1), 015045 (2020)

    Article  CAS  Google Scholar 

  52. Konate, A., Wang, Y., He, X., Adeel, M., Zhang, P., Ma, Y., Ding, Y., Zhang, J., Yang, J., Kizito, S., Rui, Y., Zhang, Z.: Comparative effects of nano and bulk-Fe3O4 on the growth of cucumber (Cucumis sativus). Ecotoxicol. Environ. Saf. 165, 547–554 (2018)

    Article  CAS  PubMed  Google Scholar 

  53. Yazdi, M.E.T., Amiri, M.S., Akbari, S., Sharifalhoseini, M., Nourbakhsh, F., Mashreghi, M., Yousefi, E., Abbasi, M.R., Modarres, M., Es-haghi, A.: Green synthesis of silver nanoparticles using Helichrysum graveolens for biomedical applications and wastewater treatment. BioNanoScience. 10(4), 1121–1127 (2020)

    Article  Google Scholar 

  54. Pandurangan, M., Enkhtaivan, G., Kim, D.H.: Anticancer studies of synthesized ZnO nanoparticles against human cervical carcinoma cells. J. Photochem. Photobiol. B. 158, 206–211 (2016)

    Article  CAS  PubMed  Google Scholar 

  55. Hasan, M., Ullah, I., Zulfiqar, H., Naeem, K., Iqbal, A., Gul, H., Ashfaq, M., Mahmood, N.: Biological entities as chemical reactors for synthesis of nanomaterials: Progress, challenges and future perspective. Mater. Today Chem. 8, 13–28 (2018)

    Article  CAS  Google Scholar 

  56. Wang, Y., Jiang, F., Ma, C., Rui, Y., Tsang, D.C., Xing, B.: Effect of metal oxide nanoparticles on amino acids in wheat grains (Triticum aestivum) in a life cycle study. J. Environ. Manag. 241, 319–327 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the scheme DST-PURSE-II New Delhi and MHRD-RUSA PHASE-2.0 (Grant sanctioned vide Letter No.F.24-51/2014-U, Policy (TNMulti-Gen), Dept.of Edn. Govt. of India, Dt.09.10.2018) New Delhi for a grant. Also, the authors express their thanks to UGC-SAP, DST-FIST and Alagappa University, Karaikudi-03, Tamil Nadu, India for their encouragement and providing excellent facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sudhahar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 44311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velsankar, K., Parvathy, G., Mohandoss, S. et al. Celosia argentea leaf extract-mediated green synthesized iron oxide nanoparticles for bio-applications. J Nanostruct Chem 12, 625–640 (2022). https://doi.org/10.1007/s40097-021-00434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00434-5

Keywords

Navigation