Skip to main content

Advertisement

Log in

Multi-objective optimization design for windows and shading configuration: considering energy consumption, thermal environment, visual performance and sound insulation effect

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

The window and shading configuration is the weak link of heat insulation in the outer protective structure. And it is also an important means of visual performance, which plays an important part in building energy savings. Resulting from the influence of weather and solar radiation, there are contradictions among the energy consumption, visual performance and thermal environment. Therefore, in order to optimize the three factors, an effective optimization method is necessary. For the window design, the existing studies mostly focus on the analysis of energy consumption performance, less on the sound insulation performance. In addition, the optimal configuration of windows and shading system under different climatic regions and orientations has been solved. In this paper, a multi-objective optimization model considering building energy consumption, thermal environment and visual performance was proposed by introducing window orientation, window–wall ratio, window configuration, shading angle and length parameters. And it uses the non-dominated sequencing genetic algorithm NSGA-II and energy simulation software EnergyPlus. The corresponding Pareto solution set was obtained from the assumed room in a cold region, hot summer and cold winter region and hot summer and warm winter region, respectively. The optimal recommended values of window parameters in each direction were determined by analyzing the Pareto solution set. The effectiveness of the multi-objective optimization model is proved by using the linear weighted sum method, and the optimization method of sound insulation effect is discussed. The optimization model in this paper is helpful for designers to choose the optimal design scheme, so that it can comply with the design requirements in terms of energy consumption, thermal environment, visual performance and achieve the overall optimal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. IEA—International Energy Agency: IEA—International Energy Agency. https://www.iea.org. Accessed 29 May 2020

  2. The 13th five-year plan for economic and social development of the People Republic of China. http://www.gov.cn/xinwen/2016-03/17/content_5054992.htm (2016). Accessed 29 May 2020

  3. Echenagucia, T.M., Capozzoli, A., Cascone, Y., Sassone, M.: The early design stage of a building envelope: multi-objective search through heating, cooling and lighting energy performance analysis. Appl Energy 154, 577–591 (2015). https://doi.org/10.1016/j.apenergy.2015.04.090

    Article  Google Scholar 

  4. Mangkuto, R.A., Dewi, D.K., Herwandani, A.A., Koerniawan, M.D.: Faridah: design optimisation of internal shading device in multiple scenarios: case study in Bandung, Indonesia. J. Build. Eng. 24, 100745 (2019). https://doi.org/10.1016/j.jobe.2019.100745

    Article  Google Scholar 

  5. Aydn, D., Mihlayanlar, E.: A case study on the impact of building envelope on energy efficiency in high-rise residential building. Arch. Civ. Eng. Environ. 13(1), 5–18 (2020). https://doi.org/10.21307/ACEE-2020-001

    Article  Google Scholar 

  6. Zhai, Y., Wang, Y., Huang, Y., Meng, X.: A multi-objective optimization methodology for window design considering energy consumption, thermal environment and visual performance. Renew Energy 134, 1190–1199 (2019). https://doi.org/10.1016/j.renene.2018.09.024

    Article  Google Scholar 

  7. Sun, Y., Wilson, R., Wu, Y.: A review of transparent insulation material (TIM) for building energy saving and daylight comfort. Appl Energy 226, 713–729 (2018). https://doi.org/10.1016/j.apenergy.2018.05.094

    Article  Google Scholar 

  8. Xiaotu, L.: Architectural Physics. China Architecture & Building Press, Beijing (2010)

    Google Scholar 

  9. Manzan, M.: Genetic optimization of external fixed shading devices. Energy Build. 72, 431–440 (2014). https://doi.org/10.1016/j.enbuild.2014.01.007

    Article  Google Scholar 

  10. Lau, A.K.K., Salleh, E., Lim, C.H., Sulaiman, M.Y.: Potential of shading devices and glazing configurations on cooling energy savings for high-rise office buildings in hot-humid climates: the case of Malaysia. Int. J. Sustain. Built Environ. 5(2), 387–399 (2016). https://doi.org/10.1016/j.ijsbe.2016.04.004

    Article  Google Scholar 

  11. Al-Masrani, S.M., Al-Obaidi, K.M., Zalin, N.A., Aida Isma, M.I.: Design optimisation of solar shading systems for tropical office buildings: challenges and future trends. Sol. Energy 170, 849–872 (2018). https://doi.org/10.1016/j.solener.2018.04.047

    Article  Google Scholar 

  12. Goia, F., Haase, M., Perino, M.: Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective. Appl Energy 108, 515–527 (2013). https://doi.org/10.1016/j.apenergy.2013.02.063

    Article  Google Scholar 

  13. Alam, M.J., Islam, M.A.: Effect of external shading and window glazing on energy consumption of buildings in Bangladesh. Adv. Build. Energy Res. 11(2), 180–192 (2017). https://doi.org/10.1080/17512549.2016.1190788

    Article  Google Scholar 

  14. Khoroshiltseva, M., Slanzi, D., Poli, I.: A Pareto-based multi-objective optimization algorithm to design energy-efficient shading devices. Appl. Energy 184, 1400–1410 (2016). https://doi.org/10.1016/j.apenergy.2016.05.015

    Article  Google Scholar 

  15. Carlucci, S., Cattarin, G., Causone, F., Pagliano, L.: Multi-objective optimization of a nearly zero-energy building based on thermal and visual discomfort minimization using a non-dominated sorting genetic algorithm (NSGA-II). Energy Build. 104, 378–394 (2015). https://doi.org/10.1016/j.enbuild.2015.06.064

    Article  Google Scholar 

  16. Shi, X., Tian, Z., Chen, W., Si, B., Jin, X.: A review on building energy efficient design optimization rom the perspective of architects. Renew. Sustain. Energy Rev. 65, 872–884 (2016). https://doi.org/10.1016/j.rser.2016.07.050

    Article  Google Scholar 

  17. Susorova, I., Tabibzadeh, M., Rahman, A., Clack, H.L., Elnimeiri, M.: The effect of geometry factors on fenestration energy performance and energy savings in office buildings. Energy Build. 57, 6–13 (2013). https://doi.org/10.1016/j.enbuild.2012.10.035

    Article  Google Scholar 

  18. Li, Z., Chen, H., Lin, B., Zhu, Y.: Fast bidirectional building performance optimization at the early design stage. Build. Simul. 004(011), 647–661 (2018)

    Article  Google Scholar 

  19. Vallée, J., Ferrara, M., Astolfi, A., Fabrizio, E.: Trade-off between sound insulation performance and cost-optimality in a residential nZEB. Energy Procedia 140, 57–66 (2017). https://doi.org/10.1016/j.egypro.2017.11.123

    Article  Google Scholar 

  20. Wu, W., Guo, J., Li, J., Hou, H., Meng, Q., Wang, W.: A multi-objective optimization design method in zero energy building study: a case study concerning small mass buildings in cold district of China. Energy Build. 158, 1613–1624 (2018). https://doi.org/10.1016/j.enbuild.2017.10.102

    Article  Google Scholar 

  21. Wang, R., Lu, S., Feng, W.: A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost. Energy 192, 116723 (2020). https://doi.org/10.1016/j.energy.2019.116723

    Article  Google Scholar 

  22. Bingham, R.D., Agelin-Chaab, M., Rosen, M.A.: Whole building optimization of a residential home with PV and battery storage in the Bahamas. Renew. Energy 132, 1088–1103 (2019). https://doi.org/10.1016/j.renene.2018.08.034

    Article  Google Scholar 

  23. Ochoa, C.E., Aries, M.B.C., van Loenen, E.J., Hensen, J.L.M.: Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort. Appl. Energy 95, 238–245 (2012). https://doi.org/10.1016/j.apenergy.2012.02.042

    Article  Google Scholar 

  24. Harmathy, N., Magyar, Z., Folić, R.: Multi-criterion optimization of building envelope in the function of indoor illumination quality towards overall energy performance improvement. Energy 114, 302–317 (2016). https://doi.org/10.1016/j.energy.2016.07.162

    Article  Google Scholar 

  25. Lee, J.W., Jung, H.J., Park, J.Y., Lee, J.B., Yoon, Y.: Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renew. Energy 50, 522–531 (2013). https://doi.org/10.1016/j.renene.2012.07.029

    Article  Google Scholar 

  26. Kwon, H.J., Yeon, S.H., Lee, K.H., Lee, K.H.: Evaluation of building energy saving through the development of venetian blinds’ optimal control algorithm according to the orientation and window-to-wall ratio. Int. J. Thermophys. 39(2), 30 (2018). https://doi.org/10.1007/s10765-017-2350-3

    Article  Google Scholar 

  27. Zhao, J., Du, Y.: Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: a case study for office building in different climatic regions of China. Sol. Energy 206, 997–1017 (2020). https://doi.org/10.1016/j.solener.2020.05.090

    Article  Google Scholar 

  28. Crawley, D., Hand, J.: Contrasting the capabilities of building energy performance simulation programs. Build. Environ. 43(4), 661–673 (2008). https://doi.org/10.1016/j.buildenv.2006.10.027

    Article  Google Scholar 

  29. Goldstein, D.B., Eley, C.: A classification of building energy performance indices. Energy Effic. 7(2), 353–375 (2014). https://doi.org/10.1007/s12053-013-9248-0

    Article  Google Scholar 

  30. OpenStudio: OpenStudio. https://www.openstudio.net/ (2020). Accessed 10 May 2020

  31. Ascione, F., Bianco, N., Mauro, G.M., Napolitano, D.F.: Retrofit of villas on Mediterranean coastlines: Pareto optimization with a view to energy-efficiency and cost-effectiveness. Appl. Energy 254, 113705 (2019). https://doi.org/10.1016/j.apenergy.2019.113705

    Article  Google Scholar 

  32. Nguyen, A., Reiter, S., Rigo, P.: A review on simulation-based optimization methods applied to building performance analysis. Appl. Energy 113, 1043–1058 (2014). https://doi.org/10.1016/j.apenergy.2013.08.061

    Article  Google Scholar 

  33. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.A.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  34. Harkouss, F., Fardoun, F., Biwole, P.H.: Multi-objective optimization methodology for net zero energy buildings. J. Build. Eng. 16, 57–71 (2018). https://doi.org/10.1016/j.jobe.2017.12.003

    Article  Google Scholar 

  35. Delgarm, N., Sajadi, B., Delgarm, S., Kowsary, F.: A novel approach for the simulation-based optimization of the buildings energy consumption using NSGA-II: case study in Iran. Energy Build. 127, 552–560 (2016). https://doi.org/10.1016/j.enbuild.2016.05.052

    Article  Google Scholar 

  36. Gong, X., Akashi, Y., Sumiyoshi, D.: Optimization of passive design measures for residential buildings in different Chinese areas. Build. Environ. 58, 46–57 (2012). https://doi.org/10.1016/j.buildenv.2012.06.014

    Article  Google Scholar 

  37. Fang, Y., Cho, S.: Design optimization of building geometry and fenestration for daylighting and energy performance. Sol. Energy 191, 7–18 (2019). https://doi.org/10.1016/j.solener.2019.08.039

    Article  Google Scholar 

  38. Reinhart, C.F., Mardaljevic, J., Rogers, Z.: Dynamic daylight performance metrics for sustainable building design. Leukos 3(1), 7–31 (2006). https://doi.org/10.1582/LEUKOS.2006.03.01.001

    Article  Google Scholar 

  39. Carlucci, S., Causone, F., De Rosa, F., Pagliano, L.: A review of indices for assessing visual comfort with a view to their use in optimization processes to support building integrated design. Renew. Sustain. Energy Rev. 47, 1016–1033 (2015). https://doi.org/10.1016/j.rser.2015.03.062

    Article  Google Scholar 

  40. Fanger, P.O., Melikov, A.K., Hanzawa, H., Ring, J.: Air turbulence and sensation of draught. Energy Build. 12(1), 21–39 (1988)

    Article  Google Scholar 

  41. Yucheng, K.: Building Sound Insulation Design: Air Sound Insulation Technology. China Architecture & Building Press, Beijing (2004)

    Google Scholar 

  42. Protection, M.O.U.A.: Code for design of sound insulation of civil buildings GB50118-2010 (2011)

  43. Administration, S.E.P.: Environment quality standard for noise GB3096-2008. (2008)

  44. Srinivas, M., Patnaik, L.M.: Genetic algorithms: a survey. Computer 6(27), 17–26 (2002). https://doi.org/10.1109/2.294849

    Article  Google Scholar 

  45. Lei, Y.S.Z.X.: MATLAB Genetic Algorithm Toolbox and Application. Xidian University Press, Xi’an (2005)

    Google Scholar 

  46. Ribeiro Filho, J.L., Treleaven, P.C.: Genetic-algorithm programming environments. Computer 27(6), 28–43 (1994). https://doi.org/10.1109/2.294850

    Article  Google Scholar 

  47. Ascione, F., Bianco, N., De Stasio, C., Mauro, G.M., Vanoli, G.P.: Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: a new approach to assess cost-optimality. Appl Energy 174, 37–68 (2016). https://doi.org/10.1016/j.apenergy.2016.04.078

    Article  Google Scholar 

  48. Delgarm, N., Sajadi, B., Kowsary, F., Delgarm, S.: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO). Appl Energy 170, 293–303 (2016). https://doi.org/10.1016/j.apenergy.2016.02.141

    Article  Google Scholar 

  49. Bre, F., Silva, A.S., Ghisi, E., Fachinotti, V.D.: Residential building design optimisation using sensitivity analysis and genetic algorithm. Energy Build. 133, 853–866 (2016). https://doi.org/10.1016/j.enbuild.2016.10.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunzhong Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Cao, Y., Wang, X. et al. Multi-objective optimization design for windows and shading configuration: considering energy consumption, thermal environment, visual performance and sound insulation effect. Int J Energy Environ Eng 12, 805–836 (2021). https://doi.org/10.1007/s40095-021-00413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-021-00413-0

Keywords

Navigation