Skip to main content
Log in

Extraction of cellulose nanocrystals from millet (Eleusine coracana) husk waste: optimization using Box Behnken design in response surface methodology (RSM)

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNCs) and their applications have attracted growing interest in both research and industry due to their appealing properties, such as excellent mechanical properties, high surface area, rich hydroxyl groups for modification, and natural properties that are 100% environmentally friendly. Cellulose nanocrystals were extracted from millet husk residue waste using a homogenized acid hydrolysis method. The effects of the process variables homogenization speed (A), acid concentration (B), and acid to cellulose ratio (C) on the yield and swelling capacity were investigated and optimized using the Box Behnken design (BBD) method in response surface methodology. The cellulose and nano-cellulose obtained were characterized using transform infrared microscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The numerical optimization analysis results showed that the maximum yield of CNCs and swelling capacity from cellulose was 93.12% and 2.81% obtained at homogenization speed, acid concentration, and acid to cellulose ratio of 7464.0 rpm, 63.40 wt%, and 18.83 wt%, respectively. ANOVA revealed that the most influential parameter in the model was homogenization speed for Yield and acid concentration for swelling capacity. The mathematical models to predict cellulose nanocrystals’ yield and swelling capacity were developed with R2 of 98.9% and 97.9%, respectively. The TGA showed that the thermal stability of cellulose was higher than that of CNCs. FTIR results showed that functional groups of CNCs and cellulose were similar. SEM image of CNCs is porous and displayed narrow particle size with needle-like morphology compared to cellulose. The XRD pattern presented an increase in the intensity of CNCs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

All data are available in this manuscript.

Abbreviations

CNCs:

Cellulose nanocrystals

FTIR:

Fourier transform infrared

SEM:

Scanning electron microscopy

XRD:

X-ray diffraction

TGA:

Thermogravimetric analysis

CNCs:

Cellulose nanocrystals

ANOVA:

Analysis of variance

BBD:

Box Benkhen Design

SWC:

Swelling capacity

R 2 :

Regression coefficient

Y :

Is the predicted response

γ 0 :

Is the model constant

A, B, and C :

Are independent variables.

γ a, γ b and γ c :

Are linear coefficients

γ ab , γ ac and γ bc :

Are cross-product coefficients

γ aa, γ bb and γ cc :

Are the quadratic coefficients

References

  1. Leszczy, A., Radzik, P., Hara, K., Pielichowski, K.: Thermal stability of cellulose nanocrystals prepared by succinic anhydride assisted hydrolysis. Thermochim. Acta 663, 145–156 (2018). https://doi.org/10.1016/j.tca.2018.03.015

    Article  CAS  Google Scholar 

  2. Niamsap, T., Tien, N., Sukyai, P.: Production of hydroxyapatite-bacterial nanocellulose sca ff old with assist of cellulose nanocrystals. Carbohydr. Polym. 205, 159–166 (2019). https://doi.org/10.1016/j.carbpol.2018.10.034

    Article  CAS  Google Scholar 

  3. Onur, A., Ng, A., Garnier, G., Batchelor, W.: Separation and Purification Technology Engineering cellulose fibre inorganic composites for depth filtration and adsorption. Sep. Purif. Technol. 203, 209–216 (2018). https://doi.org/10.1016/j.seppur.2018.04.038

    Article  CAS  Google Scholar 

  4. Abdelraof, M., Hasanin, M.S., Farag, M.M., Ahmed, H.Y.: Green synthesis of bacterial cellulose / bioactive glass nanocomposites : effect of glass nanoparticles on cellulose yield, biocompatibility and antimicrobial activity. Int. J. Biol. Macromol. 138, 975–985 (2019). https://doi.org/10.1016/j.ijbiomac.2019.07.144

    Article  CAS  Google Scholar 

  5. Lei, W., Zhou, X., Fang, C., Song, Y., Li, Y.: Eco-friendly waterborne polyurethane reinforced with cellulose nanocrystal from o ffi ce waste paper by two different methods. Carbohydr. Polym. 209, 299–309 (2019). https://doi.org/10.1016/j.carbpol.2019.01.013

    Article  CAS  Google Scholar 

  6. Hynninen, V., Mohammadi, P., Wagermaier, W., Hietala, S.: Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductility. Eur. Polym. J. 112, 334–345 (2019). https://doi.org/10.1016/j.eurpolymj.2018.12.035

    Article  CAS  Google Scholar 

  7. Awang, N.W., Ramasamy, D., Kadirgama, K., Samykano, M., Najafi, G., Azwadi, N., Sidik, C.: An experimental study on characterization and properties of nano lubricant containing Cellulose Nanocrystal (CNCs). Int. J. Heat Mass Transf. 130, 1163–1169 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.041

    Article  CAS  Google Scholar 

  8. Du, H., Liu, W., Zhang, M., Si, C., Zhang, X., Li, B.: Cellulose nanocrystals and cellulose nano fibrils based hydrogels for biomedical applications. Carbohydr. Polym. 209, 130–144 (2019). https://doi.org/10.1016/j.carbpol.2019.01.020

    Article  CAS  Google Scholar 

  9. Wu, W., Song, R., Xu, Z., Jing, Y., Dai, H., Fang, G.: Chemical Fluorescent cellulose nanocrystals with responsiveness to solvent polarity and ionic strength. Sens. Actuat. B Chem. 275, 490–498 (2018). https://doi.org/10.1016/j.snb.2018.07.085

    Article  CAS  Google Scholar 

  10. Hemmati, F., Mahdi, S., Kashaninejad, M., Barani, M.: Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues. Int. J. Biol. Macromol. 120, 1216–1224 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.012

    Article  CAS  Google Scholar 

  11. Meng, F., Wang, G., Du, X., Wang, Z., Xu, S., Zhang, Y.: Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue. Compos. Part B 160, 341–347 (2019). https://doi.org/10.1016/j.compositesb.2018.08.048

    Article  CAS  Google Scholar 

  12. Shafiei, M., Karimi, K., Taherzadeh, M.J.: Palm date fibers: analysis and enzymatic hydrolysis. Int. J. Mol. Sci. 11, 4285–4296 (2010). https://doi.org/10.3390/ijms11114285

    Article  CAS  Google Scholar 

  13. Oyewo, O.A., Mutesse, B., Leswifi, T.Y., Onyango, M.S.: Highly efficient removal of nickel and cadmium from water using sawdust- derived cellulose nanocrystals. J. Environ. Chem. Eng. 7, 103251 (2019). https://doi.org/10.1016/j.jece.2019.103251

    Article  CAS  Google Scholar 

  14. Priscila, A., Silva, M., Vitória, A., Pontes, S.M.A., Pereira, A.L.S., De, M., Filho, M.S., Rosa, M.F., Azeredo, H.M.C.: Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydr. Polym. 211, 209–216 (2019). https://doi.org/10.1016/j.carbpol.2019.02.013

    Article  CAS  Google Scholar 

  15. Souza, A.G., De Kano, F.S., Bonvent, J.J.: Cellulose nanostructures obtained from waste paper industry: a comparison of acid and mechanical isolation methods. Mat Res 20, 1–6 (2017). https://doi.org/10.1590/1980-5373-MR-2016-0863MaterialsResearch.21-6

    Article  Google Scholar 

  16. Gopalan, C., Ramashastri, B.V., Balasubramanian, B.V.: Nutritive Value of Indian Foods. ICMR Offset Press, New Delhi (1989)

    Google Scholar 

  17. Samuel, O.D., Okwu, M.O.: Comparison of Response Surface Methodology (RSM) and Artificial Neural Network (ANN) in modelling of waste coconut oil ethyl esters production. Energy Sources Part A: Recover. Utiliz. Environ. Effects 41, 1049–1061 (2019). https://doi.org/10.1080/15567036.2018.1539138

    Article  CAS  Google Scholar 

  18. Zolgharnein, J., Dalvand, K., Rastgordani, M., Zolgharnein, P.: Adsorptive removal of phosphate using nano cobalt hydroxide as a sorbent from aqueous solution; multivariate optimization and adsorption characterization. J. Alloy. Compd. 725, 1006–1017 (2017). https://doi.org/10.1016/j.jallcom.2017.07.228

    Article  CAS  Google Scholar 

  19. David Samuel, O., Adekojo Waheed, M., Taheri-Garavand, A., Verma, T.N., Dairo, O.U., Bolaji, B.O., Afzal, A.: Prandtl number of optimum biodiesel from food industrial waste oil and diesel fuel blend for diesel engine. Fuel 285, 119049 (2021). https://doi.org/10.1016/j.fuel.2020.119049

    Article  CAS  Google Scholar 

  20. Montgomery, D.C.: Design and Analysis of Experiments: Response Surface Method and Designs. Wiley, New Jersey (2005)

    Google Scholar 

  21. Yalç, A., Ersus, S., Cesur, S.: Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydr. Polym. 215, 330–337 (2019). https://doi.org/10.1016/j.carbpol.2019.03.103

    Article  CAS  Google Scholar 

  22. Henschen, J., Li, D., Ek, M.: Preparation of cellulose nanomaterials via cellulose oxalates. Carbohydr. Polym. 213, 208–216 (2019). https://doi.org/10.1016/j.carbpol.2019.02.056

    Article  CAS  Google Scholar 

  23. Wang, C., Huang, H., Jia, M., Jin, S., Zhao, W., Cha, R.: Formulation and evaluation of nanocrystalline cellulose as a potential disintegrant. Carbohydr. Polym. 130, 275–279 (2015). https://doi.org/10.1016/j.carbpol.2015.05.007

    Article  CAS  Google Scholar 

  24. Chen, D., Lawton, D., Thompson, M.R., Liu, Q.: Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr. Polym. 90, 709–716 (2012). https://doi.org/10.1016/j.carbpol.2012.06.002

    Article  CAS  Google Scholar 

  25. Taghizadeh, M.T., Sabouri, N.: Biodegradation behaviors and water adsorption of poly(vinyl alcohol)/starch/carboxymethyl cellulose/clay nanocomposites. Int. Nano Lett. 3, 1–8 (2013). https://doi.org/10.1186/2228-5326-3-51

    Article  CAS  Google Scholar 

  26. Ishak, N.S., Ishak, K.M.K., Bustami, Y., Rokiah, H.: Evaluation of Cellulose Nanocrystals (CNCs) as protein adsorbent in stick water. Mater. Today Proc. 17, 516–524 (2019). https://doi.org/10.1016/j.matpr.2019.06.330

    Article  CAS  Google Scholar 

  27. Potla Durthi, C., Rajulapati, S.B., Palliparambi, A.A., Kola, A.K., Sonawane, S.H.: Studies on removal of arsenic using cellulose acetate–zinc oxide nanoparticle mixed matrix membrane. Int. Nano. Lett. 8, 201–211 (2018). https://doi.org/10.1007/s40089-018-0245-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Paper Manufacturers Association of South Africa (PAMSA) and the Department of Science and Innovation (South Africa).

Funding

Paper Manufacturers Association of South Africa (PAMSA) and Department of Science and Innovation (South Africa) (Grant 2021).

Author information

Authors and Affiliations

Authors

Contributions

MB—conceptualization, data collection, investigation, and writing the original draft. HR—supervision, review, validation, and editing.

Corresponding author

Correspondence to Musamba Banza.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banza, M., Rutto, H. Extraction of cellulose nanocrystals from millet (Eleusine coracana) husk waste: optimization using Box Behnken design in response surface methodology (RSM). Int Nano Lett 12, 257–272 (2022). https://doi.org/10.1007/s40089-022-00369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-022-00369-x

Keywords

Navigation