Skip to main content
Log in

Radiative cooling technologies: a platform for passive heat dissipation

  • Review - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Cooling is essential to our daily lives both in residential and industrial settings, providing thermal comfort and ensuring reliable device performance. Owing to the rapid growth of cooling-related energy demand, passive cooling technologies, which are opposed to forced convection flow with air and water, have garnered immense attention. Intensive studies on radiative cooling have been conducted over the last decade to investigate the potential of its practical applications as a platform for a new generation of passive and scalable heat dissipation technologies. Here, we review progress toward understanding and optimizing the capability of radiative cooling and further discuss the remaining challenges and prospects. These findings can aid future studies in using the underlying principle of radiative cooling to solve generic light–matter interaction problems at multiscale wavelengths, thus providing fundamental insights into other thermal radiation applications, such as solar steamers, thermophotovoltaics, and infrared camouflage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Lindsey, L. Dahlman, Climate Change: Global Temperature, Climate.gov. https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature, Accessed 15 Mar 2021.

  2. Z. Khan, G. Iyer, P. Patel, S. Kim, M. Hejazi, C. Burleyson, M. Wise, Impacts of long-term temperature change and variability on electricity investments. Nat. Commun. 12, 1–12 (2021)

    Article  Google Scholar 

  3. M. Santamouris, L. Ding, F. Fiorito, P. Oldfield, P. Osmond, R. Paolini, D. Prasad, A. Synnefa, Passive and active cooling for the outdoor built environment—analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Sol. Energy. 154, 14–33 (2017)

    Article  ADS  Google Scholar 

  4. S.B. Sadineni, S. Madala, R.F. Boehm, Passive building energy savings: a review of building envelope components. Renew. Sustain. Energy Rev. 15, 3617–3631 (2011)

    Article  Google Scholar 

  5. Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36, 914–944 (2011)

    Article  Google Scholar 

  6. Y.S. Jeong, I.C. Bang, Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask. Appl. Therm. Eng. 96, 277–285 (2016)

    Article  Google Scholar 

  7. C. Xiao, G. Zhang, Z. Li, X. Yang, Custom design of solid-solid phase change material with ultra-high thermal stability for battery thermal management. J. Mater. Chem. A. 8, 14624–14633 (2020)

    Article  Google Scholar 

  8. S. Álvarez, L.F. Cabeza, A. Ruiz-Pardo, A. Castell, J.A. Tenorio, Building integration of PCM for natural cooling of buildings. Appl. Energy. 109, 514–522 (2013)

    Article  Google Scholar 

  9. D. Zhao, A. Aili, X. Yin, G. Tan, R. Yang, Roof-integrated radiative air-cooling system to achieve cooler attic for building energy saving. Energy Build. 203, 109453 (2019)

    Article  Google Scholar 

  10. D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd, G. Tan, X. Yin, R. Yang, Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule. 3, 111–123 (2019)

    Article  Google Scholar 

  11. A. Leroy, B. Bhatia, C.C. Kelsall, A. Castillejo-Cuberos, M.H. Di Capua, L. Zhao, L. Zhang, A.M. Guzman, E.N. Wang, High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5, 1–9 (2019)

    Article  Google Scholar 

  12. C. Jia, C. Chen, R. Mi, T. Li, J. Dai, Z. Yang, Y. Pei, S. He, H. Bian, S.H. Jang, J.Y. Zhu, B. Yang, L. Hu, Clear wood toward high-performance building materials. ACS Nano 13, 9993–10001 (2019)

    Article  Google Scholar 

  13. E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013)

    Article  ADS  Google Scholar 

  14. C. Zou, G. Ren, M.M. Hossain, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, C. Fumeaux, Metal-loaded dielectric resonator metasurfaces for radiative cooling. Adv. Opt. Mater. 5, 1–7 (2017)

    Article  Google Scholar 

  15. K. Sun, C.A. Riedel, Y. Wang, A. Urbani, M. Simeoni, S. Mengali, M. Zalkovskij, B. Bilenberg, C.H. De Groot, O.L. Muskens, Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft. ACS Photonics 5, 495–501 (2018)

    Article  Google Scholar 

  16. A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014)

    Article  ADS  Google Scholar 

  17. M.M. Hossain, B. Jia, M. Gu, A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 3, 1047–1051 (2015)

    Article  Google Scholar 

  18. J.-W. Cho, S.-J. Park, S.-J. Park, Y.-B. Kim, Y.-J. Moon, S.-K. Kim, Cooling metals via gap plasmon resonance. Nano Lett. 21, 3974–3980 (2021)

    Article  ADS  Google Scholar 

  19. S.Y. Heo, G.J. Lee, D.H. Kim, Y.J. Kim, S. Ishii, M.S. Kim, T.J. Seok, B.J. Lee, H. Lee, Y.M. Song, A Janus emitter for passive heat release from enclosures. Sci. Adv. 6, 1–9 (2020)

    Article  Google Scholar 

  20. G.J. Lee, Y.J. Kim, H.M. Kim, Y.J. Yoo, Y.M. Song, Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes. Adv. Opt. Mater. 6, 1800707 (2018)

    Article  Google Scholar 

  21. C. Sheng, Y. An, J. Du, X. Li, Colored radiative cooler under optical Tamm resonance. ACS Photonics 6, 2545–2552 (2019)

    Article  Google Scholar 

  22. H. Yuan, C. Yang, X. Zheng, W. Mu, Z. Wang, W. Yuan, Y. Zhang, C. Chen, X. Liu, W. Shen, Effective, angle-independent radiative cooler based on one-dimensional photonic crystal. Opt. Express. 26, 27885 (2018)

    Article  ADS  Google Scholar 

  23. D. Li, X. Liu, W. Li, Z. Lin, B. Zhu, Z. Li, J. Li, B. Li, S. Fan, J. Xie, J. Zhu, Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153–158 (2021)

    Article  ADS  Google Scholar 

  24. J. Long Kou, Z. Jurado, Z. Chen, S. Fan, A.J. Minnich, Daytime radiative cooling using near-black infrared emitters. ACS Photonics 4, 626–630 (2017)

    Article  Google Scholar 

  25. L. Zhou, H. Song, J. Liang, M. Singer, M. Zhou, E. Stegenburgs, N. Zhang, C. Xu, T. Ng, Z. Yu, B. Ooi, Q. Gan, A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2, 718–724 (2019)

    Article  Google Scholar 

  26. Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017)

    Article  ADS  Google Scholar 

  27. D. Chae, M. Kim, P.H. Jung, S. Son, J. Seo, Y. Liu, B.J. Lee, H. Lee, Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl. Mater. Interfaces. 12, 8073–8081 (2020)

    Article  Google Scholar 

  28. J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun, N.N. Shi, H. Zhou, X. Xiao, N. Yu, Y. Yang, Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018)

    Article  ADS  Google Scholar 

  29. T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, L. Hu, A radiative cooling structural material. Science 364, 760–763 (2019)

    Article  ADS  Google Scholar 

  30. T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen, L. Wu, A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 7–9 (2021)

    ADS  Google Scholar 

  31. W. Gao, Z. Lei, K. Wu, Y. Chen, Reconfigurable and renewable nano-micro-structured plastics for radiative cooling. Adv. Funct. Mater. 31, 1–8 (2021)

    Google Scholar 

  32. X. Xue, M. Qiu, Y. Li, Q.M. Zhang, S. Li, Z. Yang, C. Feng, W. Zhang, J.G. Dai, D. Lei, W. Jin, L. Xu, T. Zhang, J. Qin, H. Wang, S. Fan, Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32, 1–8 (2020)

    Article  Google Scholar 

  33. X. Li, J. Peoples, P. Yao, X. Ruan, Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl. Mater. Interfaces. 13, 21733–21739 (2021)

    Article  Google Scholar 

  34. D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J.K. Kim, J. Rho, Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 79, 105426 (2021)

    Article  Google Scholar 

  35. L. Zhu, A. Raman, K.X. Wang, M.A. Anoma, S. Fan, Radiative cooling of solar cells. Optica. 1, 32 (2014)

    Article  ADS  Google Scholar 

  36. L. Zhu, A.P. Raman, S. Fan, Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. 112, 12282–12287 (2015)

    Article  ADS  Google Scholar 

  37. W. Li, Y. Shi, K. Chen, L. Zhu, S. Fan, A comprehensive photonic approach for solar cell cooling. ACS Photonics 4, 774–782 (2017)

    Article  Google Scholar 

  38. Y. Lu, Z. Chen, L. Ai, X. Zhang, J. Zhang, J. Li, W. Wang, R. Tan, N. Dai, W. Song, A universal route to realize radiative cooling and light management in photovoltaic modules. Sol. RRL. 1, 1700084 (2017)

    Article  Google Scholar 

  39. J.W. Cho, S.J. Park, S.J. Park, Y. Bin Kim, K.Y. Kim, D. Bae, S.K. Kim, Scalable on-chip radiative coolers for concentrated solar energy devices. ACS Photonics 7, 2748–2755 (2020)

    Article  Google Scholar 

  40. L. Zhu, A. Raman, S. Fan, Color-preserving daytime radiative cooling. Appl. Phys. Lett. 103, 223902 (2013)

    Article  ADS  Google Scholar 

  41. W. Li, Y. Shi, Z. Chen, S. Fan, Photonic thermal management of coloured objects. Nat. Commun. 9, 1–8 (2018)

    ADS  Google Scholar 

  42. H.H. Kim, E. Im, S. Lee, Colloidal photonic assemblies for colorful radiative cooling. Langmuir 36, 6589–6596 (2020)

    Article  Google Scholar 

  43. S. Son, S. Jeon, D. Chae, S.Y. Lee, Y. Liu, H. Lim, S.J. Oh, H. Lee, Colored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative cooling. Nano Energy 79, 105461 (2021)

    Article  Google Scholar 

  44. P.C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, Y. Cui, Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016)

    Article  ADS  Google Scholar 

  45. Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.C. Hsu, L. Cai, B. Liu, Y. Zhu, G. Zhou, D.S. Wu, H.R. Lee, S. Fan, Y. Cui, Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018)

    Article  Google Scholar 

  46. L. Cai, A.Y. Song, W. Li, P.C. Hsu, D. Lin, P.B. Catrysse, Y. Liu, Y. Peng, J. Chen, H. Wang, J. Xu, A. Yang, S. Fan, Y. Cui, Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, 1–7 (2018)

    Article  Google Scholar 

  47. H. Luo, Y. Zhu, Z. Xu, Y. Hong, P. Ghosh, S. Kaur, M. Wu, C. Yang, M. Qiu, Q. Li, Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 21, 3879–3886 (2021)

    Article  ADS  Google Scholar 

  48. L. Cai, Y. Peng, J. Xu, C.C.C. Zhou, C.C.C. Zhou, P. Wu, D. Lin, S. Fan, Y. Cui, Temperature regulation in colored infrared-transparent polyethylene textiles. Joule. 3, 1478–1486 (2019)

    Article  Google Scholar 

  49. D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan, X. Yin, R. Yang, Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6, 021306 (2019)

    Article  ADS  Google Scholar 

  50. M.M. Hossain, M. Gu, Radiative cooling: principles, progress, and potentials. AIP Conf. Proc. 3, 1–10 (2016)

    Google Scholar 

  51. J.W. Cho, S.K. Chang, S.J. Park, S. Oh, Y. Nam, S.K. Kim, Switching of heating and cooling modes using thermal radiation films. Curr. Appl. Phys. 20, 1073–1079 (2020)

    Article  ADS  Google Scholar 

  52. P. Singh, N.M. Ravindra, Temperature dependence of solar cell performance—an analysis. Sol. Energy Mater. Sol. Cells. 101, 36–45 (2012)

    Article  Google Scholar 

  53. D.C. Jordan, S.R. Kurtz, Photovoltaic degradation rates—an analytical review. Prog. Photovoltaics Res. Appl. 21, 12–29 (2013)

    Article  Google Scholar 

  54. Z. Pan, Y. Xu, Q. Hu, W. Li, H. Zhou, Y. Zheng, Combination cation substitution tuning of yellow-orange emitting phosphor Mg2Y2Al2Si2O12:Ce3+. RSC Adv. 5, 9489–9496 (2015)

    Article  ADS  Google Scholar 

  55. M. ElKabbash, T. Letsou, S.A. Jalil, N. Hoffman, J. Zhang, J. Rutledge, A.R. Lininger, C.H. Fann, M. Hinczewski, G. Strangi, C. Guo, Fano-resonant ultrathin film optical coatings. Nat. Nanotechnol. 16, 440–446 (2021)

    Article  ADS  Google Scholar 

  56. O. Ilic, P. Bermel, G. Chen, J.D. Joannopoulos, I. Celanovic, M. Soljačić, Tailoring high-temperature radiation and the resurrection of the incandescent source. Nat. Nanotechnol. 11, 320–324 (2016)

    Article  ADS  Google Scholar 

  57. J.M. Woo, M.S. Kim, H.W. Kim, J.H. Jang, Graphene based salisbury screen for terahertz absorber. Appl. Phys. Lett. 104, 1–5 (2014)

    Google Scholar 

  58. M.S. Ergoktas, G. Bakan, E. Kovalska, L.W. Le Fevre, R.P. Fields, P. Steiner, X. Yu, O. Salihoglu, S. Balci, V.I. Fal’ko, K.S. Novoselov, R.A.W. Dryfe, C. Kocabas, Multispectral graphene-based electro-optical surfaces with reversible tunability from visible to microwave wavelengths. Nat. Photonics. 15, 493–498 (2021)

    Article  ADS  Google Scholar 

  59. D. Jeong, J. Lee, H. Hong, D. Choi, J.W. Cho, S.K. Kim, Y. Nam, Absorption mechanism and performance characterization of CuO nanostructured absorbers. Sol. Energy Mater. Sol. Cells. 169, 270–279 (2017)

    Article  Google Scholar 

  60. J.W. Cho, K.J. Lee, T. Il Lee, Y. Bin Kim, D.G. Choi, Y. Nam, S.K. Kim, Optical tunneling mediated sub-skin-depth high emissivity tungsten radiators. Nano Lett. 19, 7093–7099 (2019)

    Article  ADS  Google Scholar 

  61. S. Fan, Thermal photonics and energy applications. Joule. 1, 264–273 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (no. NRF-2020R1A2B5B01002261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Kyung Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, JW., Lee, EJ. & Kim, SK. Radiative cooling technologies: a platform for passive heat dissipation. J. Korean Phys. Soc. 81, 481–489 (2022). https://doi.org/10.1007/s40042-022-00402-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00402-4

Keywords

Navigation