Skip to main content
Log in

Quantification of Schottky barrier height and contact resistance of a Au electrode on multilayer WSe2

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Two-dimensional transition-metal dichalcogenide (TMD) device performance is significantly affected by the contact resistance of Schottky contacts at the p-type TMD–metal–electrode interface. The contact resistance and the Schottky barrier height (SBH) of a chemical-vapor-deposition-grown multilayer WSe2 film-based field-effect transistor with Au electrodes were investigated. The experimentally measured and calculated SBH was determined from temperature-dependent current–voltage measurements and thermionic emission model. The transfer length method was employed to investigate the contact resistance between the WSe2 and the Au electrode. SBH values of 56 meV for negative \(V_{{{\text{ds}}}}\) and 55.7 meV for positive \(V_{{{\text{ds}}}}\) and a contact resistance of 12 kΩ·μm were found. An ion-gel-gated field-effect transistor based on multilayer WSe2 exhibited ambipolar behavior with a mobility and an on/off ratio of \(1.09 \times 10^{ - 2}\) cm2/V s and 103, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.M. Sze et al., Physics of Semiconductor Devices (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  2. Y. Liu et al., Nature 520, 696 (2018)

    Article  ADS  Google Scholar 

  3. E.H. Rhoderick et al., Metal-Semiconductor Contacts (Clarendon Press, Oxford, New York, 1988)

    Google Scholar 

  4. R.S. Lee et al., ACS Nano 13, 642–648 (2019)

    Article  Google Scholar 

  5. D.M. Kim et al., Electron. Mater. Lett. 17, 307–314 (2021)

    Article  ADS  Google Scholar 

  6. Y. Xu et al., ACS Nano 10, 4895 (2016)

    Article  Google Scholar 

  7. P.R. Pudasaini et al., Nano Res. 11, 722–730 (2018)

    Article  Google Scholar 

  8. M.-A. Stoeckel et al., ACS Nano 13, 11613–11622 (2019)

    Article  Google Scholar 

  9. A. Allain et al., ACS Nano 8, 7180–7185 (2014)

    Article  Google Scholar 

  10. M.H. Alam, Z. Xu, S. Chowdhury, Z. Jiang, D. Taneja, S.K. Banerjee, K. Lai, M.H. Braga, D. Akinwande, Nature Commun. 11, 3203 (2020)

    Article  ADS  Google Scholar 

  11. C.-S. Pang et al., in 2018 76th Device Research Conference (DRC), pp. 1–2 (2018)

  12. H. Terrones et al., Sci. Rep. 4, 4215 (2014)

    Article  Google Scholar 

  13. H. Sahin et al., Phys. Rev. B 87, 165409 (2013)

    Article  ADS  Google Scholar 

  14. D.H. Jung et al., Thin Solid Films 719, 138508 (2021)

    Article  ADS  Google Scholar 

  15. J. Kwon et al., Nanoscale 9, 6151–6157 (2017)

    Article  Google Scholar 

  16. W. Wang et al., Sci. Rep. 4, 6928 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF- 2021R1C1C1006147) and the Samsung Electronics’ University R&D program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TaeWan Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, D.H., Kim, T. Quantification of Schottky barrier height and contact resistance of a Au electrode on multilayer WSe2. J. Korean Phys. Soc. 80, 307–310 (2022). https://doi.org/10.1007/s40042-021-00355-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00355-0

Keywords

Navigation