Skip to main content
Log in

Modulation of optoelectric properties of monolayer transition metal dichalcogenides placed on a metal pattern

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Atomically thin monolayer transition-metal dochalcogenides (1L-TMDs) are optically active direct band gap semiconducting materials with interesting properties; they are appropriate platform to study and investigate the modulated optoelectronic properties due to locally induced charge transfer phenomenon using various approaches. Herein, 1L-TMDs (MoS2, WS2 and WSe2) grown using chemical vapor deposition (CVD) were transferred above 10-nm-thick patterned platinum (Pt) stripes deposited on SiO2/Si substrate to fabricate a local vertical heterostructure of 1L-TMDs with Pt. The optical characterization showed that the PL intensities of n (p)-type 1L-TMDs, namely MoS2 and WS2 (WSe2), deposited above Pt were reduced with peak positions blue (red)-shifted by 40 (16) meV compared to the samples on SiO2/Si substrates. This was attributed to the transfer of electrons from the 1L-TMDs to the Pt due to a charge transfer process at the interface. At the same time, an enhanced photocurrent, in comparison to 1L-MoS2 alone was observed under a negative gate voltage of − 40 V from the homojunctions of 1L-MoS2 and 1L-MoS2/Pt formed within the same grain structure due to a Pt-induced local p-doping effect. The charge modulation of the opto-electrical properties of 1L-TMDs due to charge transfer caused using patterned metal provides a simple lateral homojunction for enhanced photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  2. R.S. Sundaram et al., Nano Lett. 13, 1416 (2013)

    Article  ADS  Google Scholar 

  3. S. Yang et al., ACS Appl. Mater. Interfaces 8, 2533 (2016)

    Article  Google Scholar 

  4. H.S. Lee et al., Nano Lett. 12, 3695 (2012)

    Article  ADS  Google Scholar 

  5. Y. Ye et al., Nat. Photonics 9, 733 (2015)

    Article  ADS  Google Scholar 

  6. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat. Nanotechnol. 8, 497 (2013)

    Article  ADS  Google Scholar 

  7. A. Splendiani et al., Nano Lett. 10, 1271 (2010)

    Article  ADS  Google Scholar 

  8. K.F. Mak et al., Nat. Mater. 12, 207 (2013)

    Article  ADS  Google Scholar 

  9. T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Phys. Rev. B 88, 045318 (2013)

    Article  ADS  Google Scholar 

  10. G. Plechinger et al., Phys. Status Solidi RRL 9, 457 (2015)

    Article  Google Scholar 

  11. H.S. Lee, M.S. Kim, H. Kim, Y.H. Lee, Phys. Rev. B 93, 140409 (R) (2016)

    Article  ADS  Google Scholar 

  12. M.S. Kim et al., ACS Nano 10, 2399 (2016)

    Article  Google Scholar 

  13. J. Pandey, A. Soni, Appl. Surf. Sci. 463, 52 (2019)

    Article  ADS  Google Scholar 

  14. J. Shang et al., ACS Nano 9, 647 (2015)

    Article  Google Scholar 

  15. K.P. Dhakal et al., Nanoscale 6, 13028 (2014)

    Article  ADS  Google Scholar 

  16. K.P. Dhakal et al., J. Mater. Chem. C 5, 6820 (2017)

    Article  Google Scholar 

  17. S. Roy et al., Nano Lett. 18, 4523 (2018)

    Article  ADS  Google Scholar 

  18. M.S. Kim et al., ACS Appl. Mater. Interfaces 8, 28809 (2016)

    Article  Google Scholar 

  19. S. Roy et al., J. Phys. Chem. C 121, 1997 (2017)

    Article  Google Scholar 

  20. Z. Li et al., Adv. Mater. 27, 5235 (2015)

    Article  Google Scholar 

  21. M.S. Kim et al., ACS Nano 10, 6211 (2016)

    Article  Google Scholar 

  22. Y. Li et al., Nanoscale 6, 15248 (2014)

    Article  ADS  Google Scholar 

  23. M. Grzeszczyk et al., Sci. Rep. 10, 4981 (2020)

    Article  ADS  Google Scholar 

  24. Y. Yu et al., Adv. Funct. Mater. 26, 4733 (2016)

    Article  Google Scholar 

  25. Q. Peng, Z. Wang, B. Sa, B. Wu, Z. Sun, Sci. Rep. 6, 31994 (2016)

    Article  ADS  Google Scholar 

  26. T. Akama et al., Sci. Rep. 7, 11967 (2017)

    Article  ADS  Google Scholar 

  27. S. Roy, C.M. Ajmal, S. Baik, J. Kim, Nanotechnology 28(46), 465705 (2017)

    Article  Google Scholar 

  28. Y. Kim et al., Curr. Appl. Phys. 20(1), 71 (2019)

    Article  ADS  Google Scholar 

  29. S. Roy et al., Nanomaterials 10, 1032 (2020)

    Article  Google Scholar 

  30. A. Hu et al., Opto-Electron. Adv. 3, 190017 (2020)

    Google Scholar 

  31. H.S. Lee et al., Phys. Rev. Lett. 115, 226801 (2016)

    Article  ADS  Google Scholar 

  32. M. Buscema, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Nano Res. 7, 561 (2014)

    Article  Google Scholar 

  33. B. Chakraborty et al., Phys. Rev. B 85, 161403(R) (2012)

    Article  ADS  Google Scholar 

  34. H.J. Conley et al., Nano Lett. 13, 3626 (2013)

    Article  ADS  Google Scholar 

  35. K. He, C. Poole, K.F. Mak, J. Shan, Nano Lett. 13, 2931 (2013)

    Article  ADS  Google Scholar 

  36. C.R. Zhu et al., Phys. Rev. B 88, 121301(R) (2013)

    Article  ADS  Google Scholar 

  37. W.S. Yun, S.W. Han, S.C. Hong, I.G. Kim, J.D. Lee, Phys. Rev. B 85, 033305 (2012)

    Article  ADS  Google Scholar 

  38. L. Fang et al., Nanoscale Res. Lett. 14, 274 (2019)

    Article  ADS  Google Scholar 

  39. D.M. Sim et al., ACS Nano 9(12), 12115 (2015)

    Article  Google Scholar 

  40. C.-C. Wu et al., J. Phys. Chem. Lett. 4, 2508 (2013)

    Article  Google Scholar 

  41. J.H. Lee et al., Nano Lett. 17, 673 (2017)

    Article  ADS  Google Scholar 

  42. M.-H. Doan et al., ACS Nano 12, 3832 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Postdoctoral Research Program of Sungkyunkwan University (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeongyong Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Doan, MH., Kim, J. et al. Modulation of optoelectric properties of monolayer transition metal dichalcogenides placed on a metal pattern. J. Korean Phys. Soc. 78, 693–699 (2021). https://doi.org/10.1007/s40042-021-00102-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00102-5

Keywords

Navigation