Skip to main content
Log in

Enhanced Sequestration of Synozol ds Red onto Treated Turbinria Vulgaris from Waste Water: Statistical Optimization

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

In the present study, removal of synozol ds red dye from waste water using treated Turbinaria vulgaris (T. vulgaris) was investigated. The biosorbent morphology, functional groups presence before biosorption and shifting of groups after the biosorption were analyzed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR). Response Surface Methodology (RSM) was used for the optimization of the selected parameters like pH (3–8), initial dye (20–100 mg L−1) and biosorbent dosage (0.1–0.5 g). The variables, impact on the removal of synozol ds red was analyzed from 3D graphs. The findings were well suited by Langmuir isotherm and pseudo-second-order models and the maximum biosorbent coverage was 30.3 mg g−1. Intraparticle and liquid film diffusion were rate limiting steps in the removal of synozol ds red. Therefore, treated T.vulgaris could be utilized as potential biosorbent for elimination of coloring agents from textile industrial effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Thiyagarajan, P. Saravanan, S. Shiyamaladevi, P. Saranya, N. Nagendra Gandhi, S. Renganathan, Biosorption of reactive red 2 using positively charged Metapenaeus monoceros shells. J. Saudi Chem. Soc. (2013). https://doi.org/10.1016/j.jscs.2013.05.004

    Article  Google Scholar 

  2. D. Sidra Ilyas, A. Bukhari, A. Rehman, Decolorization of synozol red 6HBN by yeast, Candida tropicalis 4S, isolated from industrial wastewater. Pakistan J. Zool 47, 1181–1185 (2015)

    Google Scholar 

  3. X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12, 1 (2017). https://doi.org/10.1186/s11671-017-1904-4

    Article  Google Scholar 

  4. A.N. Soon, B.H. Hameed, Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 269, 1–16 (2011). https://doi.org/10.1016/j.desal.2010.11.002

    Article  Google Scholar 

  5. V.R. Pereira, A.M. Isloor, U.K. Bhat, A.F. Ismail, A. Obaid, H.K. Fun, Preparation and performance studies of polysulfone-sulfated nano-titania (S-TiO2) nanofiltration membranes for dye removal. RSC Adv. 5, 53874–53885 (2015). https://doi.org/10.1039/C5RA07994B

    Article  Google Scholar 

  6. M.X. Zhu, L. Lee, H.H. Wang, Z. Wang, Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J. Hazard. Mater. 149, 735–741 (2007). https://doi.org/10.1016/j.jhazmat.2007.04.037

    Article  Google Scholar 

  7. S. Kuppusamy, K. Venkateswarlu, P. Thavamani, Y.B. Lee, R. Naidu, M. Megharaj, Quercusrobur a corn peel as a novel coagulating adsorbent for cationic dye removal from aquatic ecosystems. Ecol. Eng. 101, 3–8 (2017). https://doi.org/10.1016/j.ecoleng.2017.01.014

    Article  Google Scholar 

  8. J. Ooi, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S.S. Lim, S. Gan, Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies. Bioresour. Technol. 245, 656–664 (2017). https://doi.org/10.1016/j.biortech.2017.08.153

    Article  Google Scholar 

  9. T. Ahmad, M. Danish, M. Rafatullah, A. Ghazali, O. Sulaiman, R. Hashim, M. Nasir, M. Ibrahim, The use of date palm as a potential adsorbent for wastewater treatment: a review. Environ. Sci. Pollut. Res. 19, 1464–1484 (2012). https://doi.org/10.1007/s11356-011-0709-8

    Article  Google Scholar 

  10. A.S. Sartape, A.M. Mandhare, V.V. Jadhav, P.D. Raut, M.A. Anuse, S.S. Kolekar, Removal of malachite green dye from aqueous solution with adsorption technique using Limoniaacidissima (wood apple) shell as low cost adsorbent. Arab. J. Chem. 10, S3229–S3238 (2017). https://doi.org/10.1016/j.arabjc.2013.12.019

    Article  Google Scholar 

  11. I. Anastopoulosa, G.Z. Kyzas, Agricultural peels for dye adsorption: a review of recent literature. J. Mol. Liq. 200, 381–389 (2014). https://doi.org/10.1016/j.molliq.2014.11.006

    Article  Google Scholar 

  12. V. Karthik, K. Saravanan, C. Patra, B. Ushadevi, S. Vairam, N. Selvaraju, Biosorption of acid yellow 12 from simulated wastewater by non-viable T. harzianum: kinetics, isotherm and thermodynamic studies. Int. J. Environ. Sci. Technol. 16, 6895–6906 (2019). https://doi.org/10.1007/s13762-018-2073-4

    Article  Google Scholar 

  13. Y.A.R. Moreira, L.V.S. Santos, Studies on dye biosorption enhancement by chemically modified Fucus vesiculosus, Spirulina maxima and Chlorella pyrenoidosa algae. J. Clean. Prod. 240, 118197 (2019). https://doi.org/10.1016/j.jclepro.2019.118197

    Article  Google Scholar 

  14. J.Y. Chin, L.M. Chng, S.S. Leong, S.P. Yeap, N.H.M. Yasin, P.Y. Toh, Removal of synthetic Dye by Chlorella vulgaris microalgae as natural adsorbent. Arab. J. Sci. Eng. 45(9), 7385–7395 (2020). https://doi.org/10.1007/s13369-020-04557-9

    Article  Google Scholar 

  15. X. Zhang, J. Zhou, Y. Fan, J. Liu, Adsorption of dyes from water by Prunella vulgaris stem and subsequent fungal decolorization. Korean J. Chem. Eng. 37(9), 1445–1452 (2020). https://doi.org/10.1007/s11814-020-0601-7

    Article  Google Scholar 

  16. S.S. Moghaddam, M.R.A. Moghaddam, M. Arami, Coagulation/ flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology. J. Hazard. Mater. (2010). https://doi.org/10.1016/j.jhazmat.2009.10.058

    Article  Google Scholar 

  17. S. Chatterjee, A. Kumar, S. Basu, S. Dutta, Application of response surface methodology for Methylene Blue dye removal from aqueous solution using low-cost adsorbent. Chem. Eng. J. (2012). https://doi.org/10.1177/0263617416675625

    Article  Google Scholar 

  18. A. Witek-Krowiak, K. Chojnacka, D. Podstawczyk, A. Dawiec, K. Pokomeda, Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Biores. Technol. 160, 150–160 (2014). https://doi.org/10.1016/j.biortech.2014.01.021

    Article  Google Scholar 

  19. S. Boddu, J.B. Dulla, V.N. Alugunulla, A.A. Khan, An assessment on removal performance of arsenic with treated Turbinaria vulgaris as an adsorbent: characterization, optimization, isotherm, and kinetics study. Environ. Prog. Sustain. Energy 39, 2 (2020). https://doi.org/10.1002/ep.13313

    Article  Google Scholar 

  20. R.K. Gautam, A. Mudhoo, G. Lofrano, M.C. Chattopadhyaya, Biomass-derived biosorbents for metal ions sequestration: adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng. 2, 239–259 (2014). https://doi.org/10.1016/j.jece.2013.12.019

    Article  Google Scholar 

  21. M. Asgher, H.N. Bhatti, Mechanistic and kinetic evaluation of biosorption of reactive azo dyes by free, immobilized and chemically treated Citrus sinensis waste biomass. Ecol. Eng. 36, 1660–1665 (2010). https://doi.org/10.1016/j.ecoleng.2010.07.003

    Article  Google Scholar 

  22. A.L. Kumar Suranjit Prasad, R. Jaishree Paul, V. Subramanian, R. Prasad, Biosorption of arsenite (As+3) and arsenate (As+5) from aqueous solution by Arthrobacter sp. biomass. Environ. Technol. 34, 2701–2708 (2013). https://doi.org/10.1080/09593330.2013.786137

    Article  Google Scholar 

  23. B. Sumalatha, A. Venkata Narayana, D. John Babu, P. Rajasekhar Reddy, K. Anoar Ali, Estimation of biosorption characteristics of chromium (VI) from aqueous and real tannery effluents by treated T. vulgaris: experimental assessment and statistical modelling. Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1789617

    Article  Google Scholar 

  24. J.B. Dulla, B. Sumalatha, P. King, P.K. Yekula, Investigation on biosorption of Cd (II) onto Gelidiellaacerosa (brown algae): optimization (using RSM& ANN) and mechanistic studies. Desalination Water Treat. 107, 195–206 (2018). https://doi.org/10.5004/dwt.2018.22145

  25. J.B. Dulla, M.R. Tamana, S. Boddu, K. Pulipati, K. Srirama, Biosorption of copper (II) onto spent biomass of Gelidiella acerosa (brown marine algae): optimization and kinetic studies. Appl. Water Sci. 10, 1–10 (2020). https://doi.org/10.1007/s13201-019-1125-3

    Article  Google Scholar 

  26. R. Maurya, T. Ghosh, C. Paliwal, A. Shrivastav, K. Chokshi, I. Pancha, S. Mishra, Biosorption of methylene blue by de-oiled algal biomass: equilibrium, kinetics and artificial neural network modelling. PLoS ONE 9(10), e109545 (2014). https://doi.org/10.1371/journal.pone

    Article  Google Scholar 

  27. A. Dheetcha, S. Mishra, Biosequestering potential of Spirulina platensis for uranium. Curr Microbiol 57, 508–514 (2008). https://doi.org/10.1007/s00284-008-9277-7

    Article  Google Scholar 

  28. R. Mahesh, M. Gadekar, M. Ahammed, Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach. J. Environ. Manag. 231, 241–248 (2019). https://doi.org/10.1016/j.jenvman.2018.10.017

    Article  Google Scholar 

  29. J. Sharma, A.S. Chadha, V. Pruthi, P. Anand, J. Bhatia, B.S. Kaith, Sequestration of dyes from artificially prepared textile effluent using RSM-CCD optimized hybrid backbone based adsorbent-kinetic and equilibrium studies. J. Environ. Manag. 190, 176–187 (2017). https://doi.org/10.1016/j.jenvman.2016.12.065

    Article  Google Scholar 

  30. C.A. Igwegbe, L. Mohmmadi, S. Ahmadi, A. Rahdar, D. Khadkhodaiy, R. Dehghani, S. Rahdar, Modeling of adsorption of Methylene blue dye on Ho-CaWO4 nanoparticles using response surface methodology (RSM) and artificial neural network (ANN) techniques. Methods X 6, 1779–1797 (2019). https://doi.org/10.1016/j.mex.2019.07.016

    Article  Google Scholar 

  31. B. Sumalatha, Y. Prasanna Kumar, K. Kiran Kumar, D. John Babu, A. Venkata Narayana, K. Maria Das, T.C. Venkateswarulu, Removal of Indigo Carmine from aqueous solution by using activated carbon. Res. J. Pharm. Biol. Chem. Sci. 5, 912–922 (2014)

    Google Scholar 

  32. S. Banerjee, M.C. Chattopadhyaya, Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low-cost agricultural by-product. Arab. J. Chem. 10, S1629-S1638 (2017)

  33. F. Deniz, R.A. Kepekci, Biosorption of dye from synthetic wastewater using alga enriched in phenolic compounds. Environ. Prog. Sustainable Energy 35, 737–742 (2016). https://doi.org/10.1002/ep.12286

    Article  Google Scholar 

  34. H. Mittal, S.M. Alhassan, S.S. Ray, Efficient organic dye removal from wastewater by magnetic carbonaceous adsorbent prepared from corn starch. J. Environ. Chem. Eng. 6, 7119–7131 (2018). https://doi.org/10.1016/J.JECE.2018.11.010

    Article  Google Scholar 

  35. J.S. Piccin, M. Guterres, N.P.G. Salau, G.L. Dotto, Mass transfer models for the adsorption of Acid Red 357 and Acid Black 210 by tannery solid wastes. Adsorp. Sci. Technol. 35, 300–316 (2017). https://doi.org/10.1177/0263617416675624

    Article  Google Scholar 

Download references

Funding

There is no external fundings received for the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumalatha Boddu.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boddu, S., Dulla, J.B., Alugunulla, V.N. et al. Enhanced Sequestration of Synozol ds Red onto Treated Turbinria Vulgaris from Waste Water: Statistical Optimization. J. Inst. Eng. India Ser. D 102, 355–365 (2021). https://doi.org/10.1007/s40033-021-00271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-021-00271-4

Keywords

Navigation