Skip to main content
Log in

Review on CFD Modelling of Fluidized Bed Combustion Systems based on Biomass and Co-firing

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Fluidized bed combustion (FBC) technology has been used effectively for burning conventional fuels long time back. Due to serious environmental concerns and sustainable development approach worldwide, their use in biomass derived furnaces as well in co-firing systems has also proved to be a successful venture since last few years. To analyze, design and optimize the performance of such full scale plants, the need of computational models raised due to time consuming process and high operating costs involved for obtaining data and detailed measurements. In this study an extensive review of CFD applications in FBC systems based on biomass and co-firing has been performed. Basic fluid flow models, different approaches and additional physical and combustion models used in CFD are presented in this paper. At last it is summarized that CFD models provided satisfactory results while validating them in most of the cases. However few challenges are definitely faced for running accurate simulations especially in 3D problems of large scale plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

cp :

Specific heat, Jkg−1K−1

hg, hs :

Gas, solid phase enthalpy, Jkg−1

H:

Enthalpy, J

I:

Radiant intensity

k:

Thermal conductivity, Wm−1K−1

Pg, Ps :

Gas, solid phase pressure, Nm−2

q:

Heat flux, W

r, s:

Directions

vg, vs :

Gas, solid phase velocity vector, ms−1

α:

Volumetric inter-phase heat-transfer coefficient, Wm−3K−1

εg, εs :

Gas, solid phase volume fraction

μg, μs :

Gas, solid phase shear viscosity, Nsm−2

ρg, ρs :

Gas, solid phase density, kgm−3

σ:

Solid-phase shear stress, Nm−2

τg, τs :

Gas, solid phase shear stress, Nm−2

Θ:

Granular temperature, ms−2

BFB:

Bubbling fluidized bed

CPP:

Captive power plant

FBC:

Fluidized bed combustion

LES:

Large eddy simulation

NPM:

Non-pre mixed

ODE:

Ordinary differential equation

PDE:

Partial differential equation

PDF:

Probability density function

PSH:

Primary superheater

RANS:

Reynolds average Navier-Stokes

RNG:

Re-normalization group

RTE:

Radiative transfer equation

TFM:

Two fluid model

TPH:

Tonnes per hour

References

  1. International Energy Agency, Annual Report on Power Generation from Coal—Ongoing Developments and Outlooks (France, 2011)

  2. European Union, Directive 2001/80/EC on the limitation of emissions of certain pollutants into the air from large combustion plants. Off. J. Eur. Commun. L 309, 1–2 (2001)

    Google Scholar 

  3. S. Van Loo, J. Koppejan (eds.), The handbook of biomass combustion and co-firing (Earthscan, London, 2008)

    Google Scholar 

  4. S.R. Gubba, D.B. Ingham, K.J. Larsen, L. Ma, M. Pourkashanian, H.Z. Tan, A. Williams, H. Zhou, Numerical modelling of the co-firing of pulverised coal and straw in a 300 MWe tangentially fired boiler. Fuel Proc. Technol. 104, 181–188 (2012)

    Google Scholar 

  5. Report on biomass co-firing: A Renewable alternative for Utilities (Department of Energy, National Renewable Energy Laboratory, US, 2000).

  6. K.V. Narayanan, E. Natarajan, Experimental studies on cofiring of coal and biomass blends in India. Renew. Energy 32, 2548–2558 (2007)

    Google Scholar 

  7. J.M. Ekmann, J.C. Winslow, S.M. Smouse, M. Ramezan, International survey of co-firing coal with biomass and other wastes. Fuel Process. Technol. 54, 71–88 (1998)

    Google Scholar 

  8. N.S. Harding, B.R. Adams, Biomass as a reburning fuel—a specialized co-firing application. Biomass Bioenergy 19, 29–45 (2000)

    Google Scholar 

  9. M. Sami, K. Annamalai, M. Wooldridge, Co-firing of coal and biomass fuel blends. Prog. Energy Combust. Sci. 27, 7–23 (2001)

    Google Scholar 

  10. G. Skodras, P. Grammelis, Emission monitoring during coal waste wood co-combustion in an industrial steam boiler. Fuel 81, 547–554 (2002)

    Google Scholar 

  11. P. Basu, Combustion and Gasification in Fluidized Beds (Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

  12. F. Scala, R. Chirone, Fluidized bed combustion of alternative solid fuels. Exp. Therm. Fluid Sci. 28, 691–699 (2004)

    Google Scholar 

  13. D.A. Tillman, Co-firing benefits for coal and biomass. Biomass Bioenergy 19, 6 (2000)

    Google Scholar 

  14. D.A. Tillman, Biomass cofiring: the technology, the experience, the combustion consequences. Biomass Bioenergy 19, 365–384 (2000)

    Google Scholar 

  15. S. Pennisi, J.L. Liow, P.A. Schnieder, CFD model development for sugar mill evaporators, in Third International Conference on CFD in Minerals and Process Industry (CSIRO, Melbourne, 2013)

  16. C. Ghenai, I. Janajreh, CFD analysis of the effects of co-firing biomass with coal. Energy Convers. Manag. 51, 694–1701 (2010)

    Google Scholar 

  17. U.S. Wankhede, D.D. Adgulkar, CFD Simulations of heat transfer in a bubbling fluidized bed for different materials. Ist International Conference on Emerging Trends in Engineering and Technology (Nagpur, India, 2008), pp. 1094–1098

  18. S. Oka, Fluidized Bed Combustion (Marcel Dekker, New York, 2004)

    Google Scholar 

  19. M. Hupa, Fluidized bed combustion of biomass and waste derived fuels—current status and challenges. in Proceedings of the Waste to Energy Research and Technology Council, New York City, 2005

  20. S. Bittani, B. Paolo, M.C. Campi, A.D. Marco, G. Poncia, W. Prandoni, A model of a bubbling fluidized bed combustor oriented to char mass estimation. IEEE Trans. Control Syst. Technol. 8, 247–258 (2000)

    Google Scholar 

  21. M. Leva, Fluidization (McGraw-Hill, New York, 1959)

    Google Scholar 

  22. J.F. Davidson, D. Harrison, Fluidized Particles (Cambridge University Press, New York, 1963)

    Google Scholar 

  23. R. Toomey, H.F. Johnstone, Gas fluidization of solid particles. Chem. Eng. Prog. 48, 220–226 (1952)

    Google Scholar 

  24. D. Kunii, O. Levenspiel, Fluidization Engineering, 2nd edn. (Butterworth-Heinemann, Stoneham, 1991)

    Google Scholar 

  25. J. Werther, Hydrodynamics and Mass Transfer Between the Bubble and Emulsion Phases in Fluidized Beds of Sand and Cracking Catalyst (Fluidization, Engineering Foundation, New York, 1983)

    Google Scholar 

  26. M.M. Avedesian, J.F. Davidson, Combustion of carbon particles in a fluidized bed. Trans. Inst. Chem. Eng. 51, 121–131 (1973)

    Google Scholar 

  27. J. Adanez, J.C. Abanades, L.F. de Diego, Determination of coal combustion reactivities by burnout time measurements in a batch fluidized bed. Fuel 73, 287–293 (1994)

    Google Scholar 

  28. R.D. La Nauze, Coal devolatilization in fluidized-bed combustors. Fuel 61, 771–774 (1982)

    Google Scholar 

  29. I.B. Ross, J.F. Davidson, The combustion of carbon particles in a fluidised bed. Trans. Inst. Chem. Eng. 59, 108–114 (1981)

    Google Scholar 

  30. F. Scala, P. Salatino, Modelling fluidized bed combustion of high volatile solid fuels. Chem. Eng. Sci. 57, 1175–1196 (2002)

    Google Scholar 

  31. W.C. Yang, Handbook of Fluidization and Fluid Particle Systems (Marcel Dekker, New York, 2003)

    Google Scholar 

  32. C.Y. Wen, Y.W. Yu, Mechanics of fluidization. Eng. Progr. Symp. 162, 100–125, (1966)

    Google Scholar 

  33. K. Kato, C.Y. Wen, Bubble assemblage model for fluidized bed catalytic reactors. Chem. Eng. Sci. 24, 1351–1369 (1969)

    Google Scholar 

  34. A. Galgano, P. Salatino, F. Crescitellis Scale, P.L. Maffettone, A model of the dynamics of a fluidized bed combustor burning bio-mass. Combust. Flame 140, 371–384 (2005)

    Google Scholar 

  35. T. Nussbaumer, in Energie aus Biomasse (Springer, Berlin, ISBN 3-540-64853-42001, 288–389, 2001)

  36. L.L. Baxter, in Handbook of Biomass Combustion In addition to Conventional Two-Stage Combustion, Pri and Co-firing (Twente University Press, ISBN 9036517737, 26, 2002) 

  37. Ø. Skreiberg, Theoretical and Experimental Studies on Emissions from Wood Combustion. Ph.D. Thesis, Norwegian University, Trondheim, 1997

  38. R. Salzmann, T. Nussbaumer, Fuel staging for NOx reduction in biomass combustion. Experiments and modeling. Energy Fuels 15, 575–582 (2001)

    Google Scholar 

  39. U. Schnell, Numerical modelling of solid fuel combustion processes using advanced CFD-based simulation tools. Int. J. Prog. Comput. Fluid Dyn. 1, 208–218 (2001)

    Google Scholar 

  40. B. Peters, Numerical Simulation of Packed Bed Combustion, in Seventh European Conference on Industrial Furnaces and Boilers, 1–4 April Porto (Portugal), 1–23, 1997

  41. C. Bruch, B. Peters, T. Nussbaumer, Modelling wood combustion under fixed bed conditions. Fuel 82, 729–738 (2003)

    Google Scholar 

  42. T. Nussbaumer, Wood combustion. in Advances in Thermochemical Biomass Conversion (Blackie Academic and Professional, London, ISBN 0 7514 0171 4, 1994), pp. 575–589 

  43. T. Nussbaumer, Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels 17, 1510–1521 (2003)

    Google Scholar 

  44. C. Hirsch, Numerical computation of internal and external flows (Butterworth-Heinemann, Waltham, 2007)

    Google Scholar 

  45. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor & Francis, USA, 1980)

    MATH  Google Scholar 

  46. D. Gera, M. Gautam, Y. Tsuji, T.Tanaka Kawaguchi, Computer simulation of bubbles in large-particle fluidized beds. Powder Technol. 98, 38–47 (1998)

    Google Scholar 

  47. H. Enwald, E. Peirano, A.E. Almstedt, Eulerian two-phase flow theory applied to fluidization. Int. J. Multiph. Flow 22(1), 21–66 (1966)

    MATH  Google Scholar 

  48. C.Y. Wen, Y.H. Yu, Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 62, 100–111 (1996)

    Google Scholar 

  49. S. Ergun, Fluid flow through packed columns. Chem. Eng. Prog. 48, 89–94 (1952)

    Google Scholar 

  50. D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of circulating fluidized beds, kinetic theory approach, Fluidization VII Proceedings of the Seventh Engineering Foundation Conference on Fluidization, Gold Coast (Australia),75–82, 3–8 May 1992

  51. C.C. Pain, S. Mansoorzadeh, C.R.E. de Oliveira, A study of bubbling and slugging fluidized bed s using the two-fluid granular temperature model. Int. J. Multiph. Flow 27, 527–551 (2001)

    MATH  Google Scholar 

  52. J.A.M. Kuipers, W. Prins, W.P.M. Van Swaaij, Numerical calculation of wall to bed heat transfer coefficients in gas-fluidized beds. AIChE J. 38, 1079–1091 (1992)

    Google Scholar 

  53. A. Schmidt, U. Renz, Eulerian computation of heat transfer. Chem. Eng. Sci. 54, 5515–5522 (1999)

    Google Scholar 

  54. M. Gustavasson, A.E. Almstedt, Numerical simulation of fluid dynamics in fluidized beds with horizontal heat exchanger tubes. Chem. Eng. Sci. 55, 857–863 (2000)

    Google Scholar 

  55. R. Clift, M.E. Weber, J.R. Grace, Bubbles, Drops, and Particles (Academic Press, New York, 1978)

    Google Scholar 

  56. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (Wiley, New York, 2002)

    Google Scholar 

  57. M. Syamlal, T.J. O‘Brien, Computer simulation of bubbles in a fluidized bed. AIChE Symp. Ser. 85, 22–31 (1989)

    Google Scholar 

  58. D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions (Academic Press, San Diego, 1994)

    MATH  Google Scholar 

  59. C.Y. Wen, Y.H. Yu, Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 62, 100–111 (1966)

    Google Scholar 

  60. Y. Tsuji, T. Kawagushi, T. Tanaka, Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 77, 79–87 (1993)

    Google Scholar 

  61. B.P.B. Hoomans, J.A.M. Kuipers, W.J. Briels, W.P.M. Van Swaaij, Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chem. Eng. Sci. 51, 99–118 (1996)

    Google Scholar 

  62. N. Kobayashi, R. Yamazaki, S. Mori, A study on the behavior of bubbles and solids in bubbling fluidized beds. Powder Technol. 113, 327–344 (2000)

    Google Scholar 

  63. Y. Kaneko, T. Shiojima, M. Horio, DEM simulation of fluidized beds for gas-phase olefin polymerization. Chem. Eng. Sci. 54, 5809–5821 (1999)

    Google Scholar 

  64. M.A. Van der Hoef, M. Van Sint Annaland, J.A.M. Kuipers, Computational fluid dynamics for dense gas-solid fluidized beds: a multiscale modeling strategy. Chin. Particuol. 3, 69–77 (2005)

    Google Scholar 

  65. M. Chiesa, V. Mathiesen, J.A. Melheim, B. Halvorsen, Numerical simulation of particulate flow by the Eulerian-Lagrangian and the Eulerian-Eulerian approach with application to a fluidized bed. Comput. Chem. Eng. 29, 291–304 (2005)

    Google Scholar 

  66. S.T. Johansen, H. Laux, Simulations of granular materials flows, in Proceedings of the International Symposium on the Reliable Flow of Particulate Solids (Telemark College, Porsgrunn, Norway, 11–13 August 1999)

  67. K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equations: An Introduction (Cambridge University Press, Cambridge, 1994)

    MATH  Google Scholar 

  68. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite, vol. Method (Addison-Wesley, Longman, New York, 1995)

    Google Scholar 

  69. G. Strang, G. Fix, An Analysis of the Finite Element Method (Prentice-Hall, Englewood Cliffs, NJ, 1973)

    MATH  Google Scholar 

  70. R.H. Gallagher, Finite Element Analysis: Fundamentals (Prentice-Hall, Englewood Cliffs, NJ, 1975)

    Google Scholar 

  71. C.D. Blasi, Modeling chemical and physical processes of wood and biomass pyrolysis. Progress. Energy Combust. Sci. 34, 47–90 (2008)

    Google Scholar 

  72. B. Moghtaderi, The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels. Fire Mater. 30, 1–34 (2006)

    Google Scholar 

  73. J.C. Wurzenberger, S. Wallner, H. Raupenstrauch, J.G. Khinast, Thermal conversion of biomass: comprehensive reactor and particle modeling. AIChE J. 48, 2398–2411 (2002)

    Google Scholar 

  74. J. Corella, A. Sanz, Modeling circulating fluidized bed biomass gasifiers. A pseudo-rigorous model for stationary state. Fuel Process. Technol. 86, 1021–1053 (2005)

    Google Scholar 

  75. FLUENT 6.1 user’s guide, vol. 1–5, (Lebanon, 2003)

  76. H. Kobayashi, J. B. Howard, A. F. Sarofim, Coal devolatilization at high temperatures, in Proceedings of 16th International Symposium on Combustion, 1976

  77. A.M. Eaton, L.D. Smoot, S.C. Hill, C.N. Eatough, Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Prog. Energy Combust. Sci. 25, 387–436 (1999)

    Google Scholar 

  78. J. Pallares, I. Arauzo, A. Williams, Integration of CFD codes and advanced combustion models for quantitative burnout determination. Fuel 86, 2283–2290 (2007)

    Google Scholar 

  79. C.E.J. Bakul, V.Y. Gershtein, L. Xianming, Computational Fluid Dynamics in Industrial Combustion (CRC Press, New York, 2001)

    MATH  Google Scholar 

  80. B.E. Launder, D.B. Spalding, Lectures in Mathematical Models of Turbulence (Academic Press, London, 1972)

    MATH  Google Scholar 

  81. S.A. Morsi, A.J. Alexander, An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208 (1972)

    MATH  Google Scholar 

  82. A. Haider, O. Levenspiel, Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 58, 63–70 (1989)

    Google Scholar 

  83. T.F. Dixon, A.P. Mann, F. Plaza, W.N. Gilfillan, Development of advanced technology for biomass combustion—CFD as an essential tool. Fuel 84, 1303–1311 (2005)

    Google Scholar 

  84. S.K. Kær, Numerical modelling of a straw-fired grate boiler. Fuel 83, 1183–1190 (2004)

    Google Scholar 

  85. S.K. Kær, L.A. Rosendahl, L.L. Baxter, Towards a CFD-based mechanistic deposit formation model for straw-fired boilers. Fuel 85, 833–848 (2006)

    Google Scholar 

  86. S. K. Kær, L. A. Rosendahl, Extending the modelling capacity of CFD codes applied to biomass-fired boilers, in Proceedings of ECOS, Copenhangen, Denmark, 251–264, June 30-July 2, 2003

  87. S. K. Kær, L. A. Rosendahl, L. L. Baxter, Extending the capability of CFD codes to assess ash related problems in biomass fired boilers, in Proceedings of 227th ACS Annual Meeting, Anaheim California, Division of Fuel Chemistry, No. 12, March 28–April 1, 2004

  88. K.S. Shanmukharadhya, Simulation and thermal analysis of the effect of fuel size on combustion in an industrial biomass furnace. Energy Fuels 21, 1895–1900 (2007)

    Google Scholar 

  89. F. Marias, A model of a rotary kiln incinerator including processes occurring within the solid and the gaseous phases. Comput. Chem. Eng. 27, 813–825 (2003)

    Google Scholar 

  90. K.S. Shanmukharadhya, K.G. Sudhakar, Effect of fuel moisture on combustion in a bagasse fired furnace. J. Energy Resour. Technol.-Trans. ASME 129, 248–253 (2007)

    Google Scholar 

  91. C.S.B. Dixit, P.J. Paul, H.S. Mukunda, Part II: computational studies on a pulverised fuel stove. Biomass Bioenergy 30(7), 684–691 (2006)

    Google Scholar 

  92. C.D. Goddard, Y.B. Yang, J. Goodfellow, V.N. Sharifi, J. Swithenbank, J. Chartier, D. Mouquet, R. Kirkman, D. Barlow, S. Moseley, Optimisation study of a large waste-to-energy plant using computational modelling and experimental measurements. J. Energy Inst. 78(3), 106–116 (2005)

    Google Scholar 

  93. R.I. Backreedy, L.M. Fletcher, J. Jones, L. Ma, M. Pourkashanian, A. Williams, Co-firing pulverised coal and biomass: a modeling approach. Proc. Combust. Inst. 30, 2955–2964 (2005)

    Google Scholar 

  94. T. Abbas, M.M. Awais, F.C. Lockwood, An artificial intelligence treatment of devolatilization for pulverized coal and biomss in co-fired flames. Combust. Flame 132(3), 305–318 (2003)

    Google Scholar 

  95. N. Syred, K. Kurniawan, T. Grifths, T. Gralton, R. Ray, Development of fragmentation models for solid fuel combustion and gasification as subroutines for inclusion in CFD codes. Fuel 86(14), 2221–2231 (2007)

    Google Scholar 

  96. C.K. Tan, S.J. Wilcox, J. Ward, Use of artificial intelligence techniques for optimisation of cocombustion of coal with biomass. J. Energy Inst. 79(1), 19–25 (2006)

    Google Scholar 

  97. D. Gera, M.P. Mathur, M.C. Freeman, A. Robinson, Effect of large aspect ratio of biomass particles on carbon burnout in a utility boiler. Energy Fuels 16(6), 1523–1532 (2002)

    Google Scholar 

  98. H. Kumar, S.K. Mohapatra, R.I. Singh, Study of a 30 MW bubbling fluidized bed combustor based on co-firing biomass and coal. Sadhana Acad. Process. Eng. Sci. 40, 1283–1299 (2015)

    Google Scholar 

  99. L. Ma, J.M. Jones, M. Pourkashanian, A. Williams, Modelling the combustion of pulverized biomass in an industrial combustion test furnace. Fuel 86, 1959–1965 (2007)

    Google Scholar 

  100. M. Miltner, A. Miltner, M. Harasek, A. Friedl, Process simulation and CFD calculations for the development of an innovative baled biomass-fired combustion chamber. Appl. Therm. Eng. 27(7), 1138–1143 (2007)

    Google Scholar 

  101. V. Zarnescu, S.V. Pisupati, An integrative approach for combustor design using CFD methods. Energy Fuels 16(3), 622–633 (2002)

    Google Scholar 

  102. A. Saario, A. Oksanen, Comparison of global ammonia chemistry mechanisms in biomass combustion and selective noncatalytic reduction process conditions. Energy Fuels 22(1), 297–305 (2008)

    Google Scholar 

  103. T. Norstrom, P. Kilpinen, A. Brink, E. Vakkilainen, M. Hupa, Comparisons of the validity of different simplified NH3-oxidation mechanisms for combustion of biomass. Energy Fuels 14(5), 947–952 (2000)

    Google Scholar 

  104. T. Weydahl, M. Bugge, I.R. Gran, I.S. Ertesvag, Computational modeling of nitric oxide formation in biomass combustion. Appl. Mech. Eng. 7, 125–142 (2002)

    MATH  Google Scholar 

  105. J.W. Rogerson, J.H. Kent, R.W. Bilger, Conditional moment closure in a bagasse-fired boiler. Proc. Combust. Inst. 31, 2805–2811 (2007)

    Google Scholar 

  106. S. Ravelli, A. Perdichizzi, G. Barigozzi, Description, applications and numerical modeling of bubbling fluidized bed combustion in waste-to-energy plants. Prog. Energy Combust. Sci. 34, 224–253 (2008)

    Google Scholar 

  107. C. Mueller, A. Brink, M. Hupa, Numerical simulation of the combustion behavior of different biomasses in a bubbling fluidized bed boiler, in Proceedings of 18th International Conference on Fluidized Bed Combustion, Toronto, Ontario, Canada, 2005

  108. M. Rozainee, S.P. Ngo, A.A. Salema, K.G. Tan, Computational fluid dynamics modeling of rice husk combustion in a fluidized bed combustor. Powder Technol. 203, 331–347 (2010)

    Google Scholar 

  109. H. Kumar, S.K. Mohapatra, R.I. Singh, Three-dimensional CFD modelling of a fluidised bed combustor fuelled by biomass and coal. Mater. Res. Innov. 19, 118–124 (2015)

    Google Scholar 

  110. A. Doukelis, I. Vorrias, P. Grammelis, E. Kakaras, M. Whitehouse, G. Riley, Partial O2-fired coal power plant with post-combustion CO2 capture: a retrofitting option for CO2 capture ready plants. Fuel 88, 2428–2436 (2009)

    Google Scholar 

  111. M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.M. Amann, C. Bouallou, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng. 30, 53–62 (2009)

    Google Scholar 

  112. T. Wall, Y. Liu, C. Spero, L. Elliott, S. Khare, R. Rathnam, An overview on oxyfuel coal combustion-state of the art research and technology development. Chem. Eng. Res. Des. 87, 1003–1016 (2009)

    Google Scholar 

  113. E. Kakaras, A. Koumanakos, A. Doukelis, D. Giannakopoulos, I. Vorrias, Oxyfuel boiler design in a lignite-fired power plant. Fuel 86, 2144–2150 (2007)

    Google Scholar 

  114. S. Hjärtstam, K. Andersson, F. Johnsson, B. Leckner, Combustion characteristics of lignite-fired oxy-fuel flames. Fuel 88, 2216–2224 (2009)

    Google Scholar 

  115. W. Zhou, D. Moyeda, Process evaluation of oxy-fuel combustion with flue gas recycle in a conventional utility boiler. Energy Fuel 24, 2162–2169 (2010)

    Google Scholar 

  116. K. Andersson, F. Normann, F. Johnsson, B. Leckner, NO emission during oxy-fuel combustion of lignite. Ind. Eng. Chem. Res. 47, 1835–1845 (2008)

    Google Scholar 

  117. C. Sheng, Y. Li, Experimental study of ash formation during pulverized coal combustion in O2/CO2 mixtures. Fuel 87, 1297–1305 (2008)

    Google Scholar 

  118. Y. Qiao, L. Zhang, E. Binner, M. Xu, C.Z. Li, An investigation of the causes of the difference in coal particle ignition temperature between combustion in air and in O2/CO2. Fuel 89, 3381–3387 (2010)

    Google Scholar 

  119. L. Zhang, E. Binner, Y. Qiao, C.Z. Li, In situ diagnostics of Victorian brown coal combustion in O2/N2 and O2/CO2 mixtures in drop-tube furnace. Fuel 89, 2703–2712 (2010)

    Google Scholar 

  120. E.H. Chui, M.A. Douglas, Y. Tan, Modeling of oxy-fuel combustion for a western Canadian sub-bituminous coal [small star, filled]. Fuel 82, 1201–1210 (2003)

    Google Scholar 

  121. S.P. Khare, T.F. Wall, A.Z. Farida, Y. Liu, B. Moghtaderi, R.P. Gupta, Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel. Fuel 87, 1042–1049 (2008)

    Google Scholar 

  122. F. Normann, K. Andersson, B. Leckner, F. Johnsson, High-temperature reduction of nitrogen oxides in oxy-fuel combustion. Fuel 87, 3579–3585 (2008)

    Google Scholar 

  123. A.H. Al-Abbas, J. Naser, D. Dodds, CFD modelling of air-fired and oxy-fuel combustion of lignite in a 100 KW furnace. Fuel 90, 1778–1795 (2011)

    Google Scholar 

  124. A.H. Al-Abbas, J. Naser, D. Dodds, CFD modelling of air-fired and oxy-fuel combustion in a large-scale furnace at Loy Yang A brown coal power station. Fuel 102, 646–665 (2012)

    Google Scholar 

  125. N. Nikolopoulos, A. Nikolopoulos, E. Karampinis, P. Grammelis, E. Kakaras, Numerical investigation of the oxy-fuel combustion in large scale boilers adopting the ECO-Scrub technology. Fuel 90, 198–214 (2011)

    Google Scholar 

  126. G. Scheffknecht, L. Al-Makhadmeh, U. Schnell, J. Maier, Oxy-fuel coal combustion—a review of the current state-of-the-art. Int. J. Greenh. Gas Control 5S, S16–S35 (2011)

    Google Scholar 

  127. A.H. Al-Abbas, J. Naser, Numerical study of one air-fired and two oxy-fuel combustion cases of propane in a 100 kW furnace. Energy Fuels 26, 952–967 (2012)

    Google Scholar 

  128. H. Kass, S. Tappe, H.J. Krautz, The combustion of dry lignite under oxy-fuel process conditions in a 0.5 MWth test plant. Phys. Proc. 1, 423–430 (2008)

  129. M. Vascellari, G. Cau, Numerical simulation of pulverised coal oxy-combustion with exhaust gas recirculation, in Fourth International Conference on Clean Coal Technologies, CCT, 2009

  130. E. Croiset, K.V. Thambimuthu, A. Palmer, Coal combustion in O2/CO2 mixtures compared with air. Can. J. Chem. Eng. 78, 402–407 (2000)

    Google Scholar 

  131. E. Croiset, K.V. Thambimuthu, NOx and SO2 emission from O2/CO2 recycled coal combustion. Fuel 80, 2117–2121 (2001)

    Google Scholar 

  132. E. Croiset, K.V. Thambimuthu, Coal combustion with flue gas recirculation for CO 2 recovery, in ed. by P. Riemer, B. Eliasson, A. Wokaun Greenhouse Gas Technologies (Amsterdam, 1999), pp. 581–586

  133. Y. Tan, E. Croiset, M.A. Douglas, V. Thambimuthu, Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel 85, 507–512 (2006)

    Google Scholar 

  134. J. Erfurth, D. Toporov, M. Forster, R. Kneer, Numerical simulation of a 1200 MWth pulverized fuel oxy-firing furnace, in Fourth International Conference on Clean Coal Technologies, CCT, 2009

  135. H. Liu, R. Zailani, B.M. Gibbs, Comparisons of pulverized coal combustion in air and in mixtures of O2–CO2. Fuel 84, 833–840 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Mohapatra, S.K. & Singh, R.I. Review on CFD Modelling of Fluidized Bed Combustion Systems based on Biomass and Co-firing. J. Inst. Eng. India Ser. C 99, 449–474 (2018). https://doi.org/10.1007/s40032-017-0361-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-017-0361-2

Keywords

Navigation