Skip to main content

Advertisement

Log in

Optimization of Power Coefficient of Wind Turbine Using Genetic Algorithm

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

In the design of a wind turbine, the goal is to attain the highest possible power output under specified atmospheric conditions. The optimization of power coefficient of horizontal axis wind turbine has been carried out by integration of blade element momentum method and genetic algorithm (GA). The design variables considered are wind velocity, angle of attack and tip speed ratio. The objective function is power coefficient of wind turbine. The different combination of design variables are optimized using GA and then the Power coefficient is optimized. The optimized design variables are validated with the experimental results available in the literature. By this optimization work the optimum design variables of wind turbine can be found economically than experimental work. NACA44XX series airfoils are considered for this optimization work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(C_{p}\) :

Power coefficient

a′:

Angular induction factor

a :

Axial induction factor

Nb :

Number of blade

C:

Chord

CL :

Coefficient of lift

CD :

Coefficient of drag

ρ:

Density of air

θ:

Inflow angle

TSR:

Tip speed ratio

AOA:

Angle of attack

v:

Wind velocity

p_size :

Population size

Nran :

Random numbers

p_mut :

Probability of mutation

rcp :

Cutting point random number

p_ cro :

Probability of crossover

References

  1. A. Varola, C. Ilkılıc, Y. Varolc, Increasing the efficiency of wind turbines. J. Wind Eng. Ind. Aerodyn. 89, 809–815 (2001)

    Article  Google Scholar 

  2. G. Kenway, J.R.R.A. Martins, Aerostructural shape optimization of wind turbine blades considering site-specific winds. in Proceedings of 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victoria, British Columbia, Canada, 10–12 Sept 2008

  3. H.J. Stewart, Dual optimum aerodynamic design for a conventional windmill. AIAA J. 14, 1524–1527 (1976)

    Article  Google Scholar 

  4. J.H.P. Buckley, Numerical shape optimization of airfoils with practical aerodynamic design requirements. A thesis submitted in conformity with the requirements for the degree of Masters of Applied Science Graduate Department of Aerospace Engineering University of Toronto, 2009

  5. C. Thumthae, T. Chitsomboon, Optimal angle of attack for untwisted blade wind turbine. Renew. Energy 34, 1279–1284 (2009)

    Article  Google Scholar 

  6. P. Fuglsang, H.A. Madsen, Optimization method for wind turbine rotors. J. Wind Eng. Ind. Aerodyn. 80, 191–206 (1999)

    Article  Google Scholar 

  7. K. Badreddinne, H. Ali, A. David, Optimum project for horizontal axis wind turbines. Renew. Energy 30, 2019–2043 (2005)

    Article  Google Scholar 

  8. A. Kusiak, H. Zheng, Z. Song, Power optimization of wind turbines with data mining and evolutionary computation. Renew. Energy 35, 695–702 (2010)

    Article  Google Scholar 

  9. R. Lanzafame, M. Messina, Fluid dynamics wind turbine design: critical analysis optimization and application of BEM theory. Renew. Energy 32, 2291–2305 (2007)

    Article  Google Scholar 

  10. S. Vijayalakshmi, S. Saikumar, S. Saravanan, R.V. Sandip, V. Sridhar, Modelling and control of a wind turbine using permanent magnet synchronous generator. Int. J. Eng. Sci. Technol. 3(3), 2377–2384 (2011)

    Google Scholar 

  11. R. Bharanikumar, A. Nirmal Kumar, Analysis of wind turbine driven pm generator with power converters. Int. J. Comp. Electr. Eng. 2(4), 766–769 (2010)

    Article  Google Scholar 

  12. K.R. Ajao, I.K. Adegun, Development and power performance test of a small three-blade horizontal-axis wind turbine. Heat Transf. Res. 40(8), 777–792 (2009)

    Article  Google Scholar 

  13. C. Masson, I. Ammara, I. Paraschivoiu, An aerodynamic for the analysis of isolated horizontal-axis wind turbines. Int. J. Rotating Mach. 3(1), 21–32 (1997)

    Article  Google Scholar 

  14. M. Jureczko, M. Pawlak, A. Mezyk, Optimisation of wind turbine blades. J. Mater. Process. Technol. 167, 463–471 (2005)

    Article  Google Scholar 

  15. H. Karimi-Davijani, A. Sheikholeslami, H. Livani, M. Karimi-Davijani, Fuzzy logic control of doubly fed induction generator wind turbine. World Appl. Sci. J. 6(4), 499–508 (2009)

    Google Scholar 

  16. N. Tenguria, N.D. Mittal, S. Ahmed, Investigation of blade performance of horizontal axis wind turbine based on blade element momentum theory (BEMT) using NACA airfoils. Int. J. Eng. Sci. Technol 2(12), 25–35 (2010)

    Google Scholar 

  17. T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook, 2nd edn. (Wiley, Hoboken, 2011). doi:10.1002/9781119992714

    Book  Google Scholar 

  18. http://www.obitko.com/tutorials/genetic-algorithms/recommendations.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sappani Rajakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajakumar, S., Ravindran, D., Sivakumar, M. et al. Optimization of Power Coefficient of Wind Turbine Using Genetic Algorithm. J. Inst. Eng. India Ser. C 98, 111–118 (2017). https://doi.org/10.1007/s40032-016-0323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-016-0323-0

Keywords

Navigation