Skip to main content

Advertisement

Log in

A Review on Voltage and Frequency Contingencies Mitigation Technologies in a Grid with Renewable Energy Integration

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

The large-scale integration of renewable energy resources have changed the configuration of distribution system towards more active system. They post several operational challenges for the grid and require massive transformation in the way it is being operated, monitored and controlled. Two major challenges of frequency fluctuation and harmonics are exhaustively reviewed in the light of recent technologies. The frequency fluctuations and harmonic content introduce into the network due to changing behaviour of RESs and power electronic devices used, respectively, are covered in this paper. This paper consists of the most recent techniques of virtual inertia and virtual impedance control for the power quality improvement. Future research directions are also mentioned for the guidance of new researchers in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Zuhaib, H.A. Khan, M. Rihan, Performance analysis of a utility-scale grid integrated solar farm considering physical and environmental factors. J. Inst. Eng. Ser. B 102(2), 363–375 (2021). https://doi.org/10.1007/s40031-020-00500-6

    Article  Google Scholar 

  2. H.A. Khan, M. Zuhaib, M. Rihan, Analysis of varying PV penetration level on harmonic content of active distribution system with a utility scale grid integrated solar farm. Aust. J. Electr. Electron. Eng. (2022). https://doi.org/10.1080/1448837X.2022.2025656

    Article  Google Scholar 

  3. K. Mausam, S. Kumar Ghosh, A.K. Tiwari, R.P. Singh, Solar Power Development: A Root for Sustainable Development of India. IOP Conf. Ser. Mater. Sci. Eng. (2019). https://doi.org/10.1088/1757-899X/691/1/012084

    Article  Google Scholar 

  4. M.F. Jalil, S. Khatoon, I. Nasiruddin, R.C. Bansal, Review of PV array modelling, configuration and MPPT techniques. Int. J. Model. Simul. 42(4), 533–550 (2022). https://doi.org/10.1080/02286203.2021.1938810

    Article  Google Scholar 

  5. MNRE, “Current Status | Ministry of New and Renewable Energy, Government of India,” Solar Energy, (2020). [Online]. Available: https://mnre.gov.in/bio-energy/current-status%0Ahttps://mnre.gov.in/bio-energy/current-status%0Ahttps://mnre.gov.in/solar/current-status/.

  6. K. Yadav and S. Maurya, A comparative study on the performance of energy storage systems for hybrid electric vehicles, in Lecture Notes in Electrical Engineering, Springer, (2022), pp. 795–803.

  7. R.N. Mishra, D.K. Chaturvedi, P. Kumar, Recent philosophies of AGC techniques in deregulated power environment. J. Inst. Eng. Ser. B 101(4), 417–433 (2020). https://doi.org/10.1007/s40031-020-00463-8

    Article  Google Scholar 

  8. M. Zuhaib and M. Rihan, PMU installation in power grid for enhanced situational awareness: Challenges, issues and application, in 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics UPCON 2017, vol. 2018-Janua, (2017), pp. 654–659, https://doi.org/10.1109/UPCON.2017.8251127.

  9. A. Khair, M. Zuhaib, M. Rihan, Effective utilization of limited channel PMUs for islanding detection in a solar PV integrated distribution system. J. Inst. Eng. Ser. B 102(1), 75–86 (2021). https://doi.org/10.1007/s40031-020-00467-4

    Article  Google Scholar 

  10. J. Enslin, “Grid Impacts and Solutions of Renewables at High Penetration Levels,” vol. 3037, pp. 1–7, 2009.

  11. R. Shah, N. Mithulananthan, R.C. Bansal, V.K. Ramachandaramurthy, A review of key power system stability challenges for large-scale PV integration. Renew. Sustain. Energy Rev. 41, 1423–1436 (2015). https://doi.org/10.1016/j.rser.2014.09.027

    Article  Google Scholar 

  12. M. Karimi, H. Mokhlis, K. Naidu, S. Uddin, A.H.A. Bakar, Photovoltaic penetration issues and impacts in distribution network – A review. Renew. Sustain. Energy Rev. 53, 594–605 (2016). https://doi.org/10.1016/j.rser.2015.08.042

    Article  Google Scholar 

  13. M. Ding, Z. Xu, W. Wang, X. Wang, Y. Song, D. Chen, A review on China׳s large-scale PV integration: Progress, challenges and recommendations. Renew. Sustain. Energy Rev. 53, 639–652 (2016). https://doi.org/10.1016/j.rser.2015.09.009

    Article  Google Scholar 

  14. S. Singh, R. K. Verma, A. K. Shakya, and S. P. Singh, “Frequency stability analysis of hybrid power system based on solar PV with SMEs unit,” in 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES), (2016), pp. 5–11.https://doi.org/10.1109/ICETEESES.2016.7581343

  15. U. Tamrakar, D. Galipeau, R. Tonkoski, and I. Tamrakar, “Improving transient stability of photovoltaic-hydro microgrids using virtual synchronous machines,” in 2015 IEEE Eindhoven PowerTech, (2015), pp. 1–6https://doi.org/10.1109/PTC.2015.7232663

  16. G. Delille, B. Francois, G. Malarange, Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia. IEEE Trans. Sustain. Energy 3(4), 931–939 (2012). https://doi.org/10.1109/TSTE.2012.2205025

    Article  Google Scholar 

  17. H. Bevrani, H. Golpîra, A.R. Messina, N. Hatziargyriou, F. Milano, T. Ise, Power system frequency control: An updated review of current solutions and new challenges. Electr. Power Syst. Res. 194(December), 2021 (2020). https://doi.org/10.1016/j.epsr.2021.107114

    Article  Google Scholar 

  18. A. Mohammad, M. Zuhaib, I. Ashraf, An optimal home energy management system with integration of renewable energy and energy storage with home to grid capability. Int. J. Energy Res. 46(6), 8352–8366 (2022). https://doi.org/10.1002/er.7735

    Article  Google Scholar 

  19. H.A. Khan, M. Zuhaib, M. Rihan, Voltage fluctuation mitigation with coordinated OLTC and energy storage control in high PV penetrating distribution network. Electr. Power Syst. Res. 208, 107924 (2022). https://doi.org/10.1016/j.epsr.2022.107924

    Article  Google Scholar 

  20. M. Nishan T. and A. O. V., Virtual inertia based frequency regulation of microgrid with PSS under renewable source integration, in 2021 International Conference on Communication, Control and Information Sciences (ICCISc), (2021), vol. 1, pp. 1–6, https://doi.org/10.1109/ICCISc52257.2021.9484868.

  21. D. Su, Z. Lei, Optimal configuration of battery energy storage system in primary frequency regulation. Energy Rep. 7, 157–162 (2021). https://doi.org/10.1016/j.egyr.2021.08.061

    Article  Google Scholar 

  22. K.M. Cheema, A comprehensive review of virtual synchronous generator. Int. J. Electr. Power Energy Syst. 120, 106006 (2020). https://doi.org/10.1016/j.ijepes.2020.106006

    Article  Google Scholar 

  23. N. Mansouri, A. Lashab, D. Sera, J.M. Guerrero, A. Cherif, Large photovoltaic power plants integration: a review of challenges and solutions. Energies (2019). https://doi.org/10.3390/en12193798

    Article  Google Scholar 

  24. Y.V.P. Kumar, R. Bhimasingu, Improving resiliency in renewable energy based green microgrids using virtual synchronous machines controlled inverter. IEEE Innov. Smart Grid Technol. - Asia (ISGT ASIA) 2015, 1–6 (2015). https://doi.org/10.1109/ISGT-Asia.2015.7387178

    Article  Google Scholar 

  25. V. Van Thong et al., Virtual synchronous generator: Laboratory scale results and field demonstration. IEEE Bucharest PowerTech 2009, 1–6 (2009). https://doi.org/10.1109/PTC.2009.5281790

    Article  Google Scholar 

  26. J. Liu, Y. Miura, T. Ise, Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Trans. Power Electron. 31(5), 3600–3611 (2016). https://doi.org/10.1109/TPEL.2015.2465852

    Article  Google Scholar 

  27. M.C. Chandorkar, D.M. Divan, R. Adapa, Control of parallel connected inverters in standalone AC supply systems. IEEE Trans. Ind. Appl. 29(1), 136–143 (1993). https://doi.org/10.1109/28.195899

    Article  Google Scholar 

  28. P. Chilukuri et al., Introduction of secondary frequency control in indian power system, in 2018 20th National Power Systems Conference (NPSC), (2018), pp. 1–6, https://doi.org/10.1109/NPSC.2018.8771767

  29. U. Tamrakar, D. Shrestha, M. Maharjan, and B. P. Bhattarai, Applied sciences virtual inertia : current trends and future directions, (2017), pp. 1–29, https://doi.org/10.3390/app7070654

  30. K. Sakimoto, Y. Miura, and T. Ise, “Stabilization of a power system with a distributed generator by a Virtual Synchronous Generator function,” in 8th International Conference on Power Electronics - ECCE Asia, (2011), pp. 1498–1505, https://doi.org/10.1109/ICPE.2011.5944492.

  31. Q. Zhong, G. Weiss, Synchronverters: inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 58(4), 1259–1267 (2011). https://doi.org/10.1109/TIE.2010.2048839

    Article  Google Scholar 

  32. S. D’Arco, J.A. Suul, Virtual synchronous machines - Classification of implementations and analysis of equivalence to droop controllers for microgrids. IEEE Grenoble Conference 2013, 1–7 (2013). https://doi.org/10.1109/PTC.2013.6652456

    Article  Google Scholar 

  33. J. Roldan-Perez, A. Rodriguez-Cabero, M. Prodanovic, Design and analysis of virtual synchronous machines in inductive and resistive weak grids. IEEE Trans. Energy Convers. (2019). https://doi.org/10.1109/TEC.2019.2930643

    Article  Google Scholar 

  34. H. Alrajhi Alsiraji, R. El-Shatshat, Comprehensive assessment of virtual synchronous machine based voltage source converter controllers. IET Gener. Transm. Distrib. 11(7), 1762–1769 (2017). https://doi.org/10.1049/iet-gtd.2016.1423

    Article  Google Scholar 

  35. J. Fang, H. Li, Y. Tang, F. Blaabjerg, Distributed power system virtual inertia implemented by grid-connected power converters. IEEE Trans. Power Electron. 33(10), 8488–8499 (2018). https://doi.org/10.1109/TPEL.2017.2785218

    Article  Google Scholar 

  36. W.U.K. Tareen et al., Mitigation of power quality issues due to high penetration of renewable energy sources in electric grid systems using three-phase APF/STATCOM technologies: A review. Energies (2018). https://doi.org/10.3390/en11061491

    Article  Google Scholar 

  37. K. Abdeladim, S. Ould, O. Amrouche, S. Semaoui, ScienceDirect temperature function for a district heat demand forecast Investigation Investigation of of the the voltage voltage quality quality at at PCC PCC of of grid grid connected. Energy Procedia 141, 66–70 (2017). https://doi.org/10.1016/j.egypro.2017.11.013

    Article  Google Scholar 

  38. N. Golovanov, G. C. Lazaroiu, M. Roscia, and D. Zaninelli, Power quality assessment in small scale renewable energy sources supplying distribution systems, (2013), pp. 634–645, doi: https://doi.org/10.3390/en6020634

  39. A. Q. Al-shetwi and M. Z. Sujod, Harmonic distortion and voltage imbalance study of photovoltaic power plant connected to the Malaysian grid, 10(1), 2–7.

  40. A. Misbawu, C. Yuepeng, L. Lianyuan, and D. Xiangtian, Research on harmonic compensation of distribution network with high permeability access of new energy power generation, in 2017 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), (2017), pp. 159–163, https://doi.org/10.1109/ICIICII.2017.69

  41. G.M. Shafiullah, A.M.T. Oo, Analysis of harmonics with renewable energy integration into the distribution network. IEEE Innov. Smart Grid Technol. - Asia (ISGT ASIA) 2015, 1–6 (2015). https://doi.org/10.1109/ISGT-Asia.2015.7387191

    Article  Google Scholar 

  42. T. E. C. De Oliveira, P. M. S. Carvalho, P. F. Ribeiro, and B. D. Bonatto, PV hosting capacity dependence on harmonic voltage distortion in low-voltage grids : model, (2018), https://doi.org/10.3390/en11020465.

  43. S. E. Binti Sabri, M. Zahim Bin Sujod, W. N. Huda Binti Alias, and M. Shawal Bin Jadin, Limiting THD of grid connected photovoltaic system using PWM switching frequency selection based on solar irradiance changing, in 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), (2019), pp. 96–101, https://doi.org/10.1109/I2CACIS.2019.8825091

  44. M.K. Das, K.C. Jana, A. Sinha, Performance evaluation of an asymmetrical reduced switched multi-level inverter for a grid-connected PV system. IET Renew. Power Gener. 12(2), 252–263 (2018). https://doi.org/10.1049/iet-rpg.2016.0895

    Article  Google Scholar 

  45. A. N. Madkor, W. R. Anis, and I. Hafez, The effect of numbers of inverters in photovoltaic grid connected system on efficiency, reliability and cost, 4(09), (2015).

  46. M. Ayub, C.K. Gan, A.F.A. Kadir, The impact of grid-connected PV systems on Harmonic Distortion. IEEE Innov. Smart Grid Technol. - Asia (ISGT ASIA) 2014, 669–674 (2014). https://doi.org/10.1109/ISGT-Asia.2014.6873872

    Article  Google Scholar 

  47. R. Dash, S.C. Swain, effective power quality improvement using dynamic activate compensation system with renewable grid interfaced sources. Ain Shams Eng. J. 9(4), 2897–2905 (2018). https://doi.org/10.1016/j.asej.2017.09.007

    Article  Google Scholar 

  48. C. Hicks, Y. Baghzouz, Power quality of residential PV system under low solar irradiance and off-grid operation. 2018 18th Int Conf. Harmon. Qual. Power 4026, 1–5 (2018). https://doi.org/10.1109/ICHQP.2018.8378937

    Article  Google Scholar 

  49. R. Sunny and R. Anto, “Harmonics control and performance analysis of a grid connected photovoltaic system,” in 2013 International Conference on Advanced Computing and Communication Systems, (2013), pp. 1–6 https://doi.org/10.1109/ICACCS.2013.6938706

  50. A. Chidurala, T. Saha, and N. Mithulananthan, “Harmonic characterization of grid connected PV systems amp; validation with field measurements,” in 2015 IEEE Power Energy Society General Meeting, (2015), pp. 1–5, https://doi.org/10.1109/PESGM.2015.7286198

  51. A. Chidurala, T. K. Saha, N. Mithulananthan, and R. C. Bansal, “Harmonic emissions in grid connected PV systems: A case study on a large scale rooftop PV site,” in 2014 IEEE PES General Meeting | Conference Exposition, (2014), pp. 1–5, https://doi.org/10.1109/PESGM.2014.6939147

  52. N. Phannil, C. Jettanasen, and A. Ngaopitakkul, Power quality analysis of grid connected solar power inverter, in 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), (2017), pp. 1508–1513, https://doi.org/10.1109/IFEEC.2017.7992269.

  53. X. Zhao and S. Liu, A research of harmonics for multiple PV inverters in grid-connected, in 2012 Asia-Pacific Power and Energy Engineering Conference, (2012), pp. 1–4,https://doi.org/10.1109/APPEEC.2012.6307197

  54. R. K. Varma and M. Salama, Large-scale photovoltaic solar power integration in transmission and distribution networks, in 2011 IEEE Power and Energy Society General Meeting, 2011, pp. 1–4.https://doi.org/10.1109/PES.2011.6039860

  55. J. Xu, Q. Qian, B. Zhang, S. Xie, Harmonics and stability analysis of single-phase grid-connected inverters in distributed power generation systems considering phase-locked loop impact. IEEE Trans. Sustain. Energy 10(3), 1470–1480 (2019). https://doi.org/10.1109/TSTE.2019.2893679

    Article  Google Scholar 

  56. S. Gonzalez, M. Ropp, A. Fresquez, M. Montoya, and N. Opell, Paper presented at the 36th IEEE photovoltaic specialists conference, Seattle, WA (2011) Multi-PV inverter utility interconnection evaluations Sandia National Laboratories, Albuquerque, NM Northern Plains Power Technologies, Brookings, SD, (2011).

  57. G. Inverters, Wide bandwidth control for multi-parallel grid-connected inverters with harmonic compensation, (2019), https://doi.org/10.3390/en12030571.

  58. B. Liu, Z. Liu, J. Liu, R. An, H. Zheng, Y. Shi, An adaptive virtual impedance control scheme based on small-AC-signal injection for unbalanced and harmonic power sharing in islanded microgrids. IEEE Trans. Power Electron. 34(12), 12333–12355 (2019). https://doi.org/10.1109/TPEL.2019.2905588

    Article  Google Scholar 

  59. Z. Piao, Y. Zhong, Harmonic compensation control of grid-connected inverter based on virtual impedance, in 2018 21st International Conference on Electrical Machines and Systems (ICEMS), (2018), pp. 2364–2368, https://doi.org/10.23919/ICEMS.2018.8549384.

  60. S. Xu, J. Xu, Parallel control strategy of single-phase inverter based on virtual impedance, in 2010 International Conference on Communications, Circuits and Systems (ICCCAS), (2010), pp. 589–592, https://doi.org/10.1109/ICCCAS.2010.5581928.

  61. B. Li, Y. Lu, Y. Huang, J. Li, A review of virtual impedance technology for grid connected inverters, no. 1350, (2018), pp. 99–104.

  62. D. R. Control, A composite strategy for harmonic compensation in standalone inverter based on linear active, (2019), https://doi.org/10.3390/en12132618.

  63. Y.W. Li, J. He, Distribution system harmonic compensation methods: an overview of DG-interfacing inverters. IEEE Ind. Electron. Mag. 8(4), 18–31 (2014). https://doi.org/10.1109/MIE.2013.2295421

    Article  Google Scholar 

  64. S. Munir, Y.W. Li, Residential distribution system harmonic compensation using PV interfacing inverter. IEEE Trans. Smart Grid 4(2), 816–827 (2013). https://doi.org/10.1109/TSG.2013.2238262

    Article  Google Scholar 

  65. X. Wang, Y.W. Li, F. Blaabjerg, P.C. Loh, Virtual-impedance-based control for voltage-source and current-source converters. IEEE Trans. Power Electron. 30(12), 7019–7037 (2015). https://doi.org/10.1109/TPEL.2014.2382565

    Article  Google Scholar 

  66. J. He, Y. W. Li, Generalized microgrid harmonic compensation strategies using DG unit interfacing converters, in IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, (2012), pp. 3419–3424, https://doi.org/10.1109/IECON.2012.6389350.

  67. J. He, M. S. Munir, Y. W. Li, “Opportunities for power quality improvement through DG-grid interfacing converters,” in The 2010 International Power Electronics Conference - ECCE ASIA -, (2010), pp. 1657–1664https://doi.org/10.1109/IPEC.2010.5542170

  68. J. He, Y.W. Li, Hybrid voltage and current control approach for DG-grid interfacing converters with LCL filters. IEEE Trans. Ind. Electron. 60(5), 1797–1809 (2013). https://doi.org/10.1109/TIE.2012.2190374

    Article  Google Scholar 

  69. J. He, Y.W. Li, M.S. Munir, A flexible harmonic control approach through voltage-controlled DG-grid interfacing converters. IEEE Trans. Ind. Electron. 59(1), 444–455 (2012). https://doi.org/10.1109/TIE.2011.2141098

    Article  Google Scholar 

  70. R. Torquato, W. Freitas, G. R. T. Hax, A. R. Donadon, R. Moya, High frequency harmonic distortions measured in a Brazilian solar farm, in 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), (2016), pp. 623–627, https://doi.org/10.1109/ICHQP.2016.7783482.

  71. X. Liang, R. Adedun, Load harmonics analysis and mitigation, in 48th IEEE Industrial Commercial Power Systems Conference, (2012), pp. 1–8, https://doi.org/10.1109/ICPS.2012.6229604.

  72. R. Haider, C.-H. Kim, Chapter 7 - Protection of DERs, in Integration of Distributed Energy Resources in Power Systems, T. Funabashi, (Ed.) Academic Press, (2016), pp. 157–192.

  73. C. Blanco, D. Reigosa, J.C. Vasquez, J.M. Guerrero, F. Briz, Virtual admittance loop for voltage harmonic compensation in microgrids. IEEE Trans. Ind. Appl. 52(4), 3348–3356 (2016). https://doi.org/10.1109/TIA.2016.2547362

    Article  Google Scholar 

  74. Y. Wang, Yongdong Tan, Z. Chen, X. Wang, Y. Tian, A communication-less distributed voltage control strategy for a multi-bus AC islanded microgrid, in 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), (2014), pp. 3538–3545, https://doi.org/10.1109/IPEC.2014.6870005.

  75. M. S. Munir, Y. W. Li, Harmonic compensation using residential PV interfacing inverter, in IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, (2012), pp. 5324–5329, https://doi.org/10.1109/IECON.2012.6389535.

  76. S.Y. Mousazadeh Mousavi, A. Jalilian, M. Savaghebi, J.M. Guerrero, Autonomous control of current- and voltage-controlled dg interface inverters for reactive power sharing and harmonics compensation in islanded microgrids. IEEE Trans. Power Electron. 33(11), 9375–9386 (2018). https://doi.org/10.1109/TPEL.2018.2792780

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Zuhaib.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H.A., Zuhaib, M. & Rihan, M. A Review on Voltage and Frequency Contingencies Mitigation Technologies in a Grid with Renewable Energy Integration. J. Inst. Eng. India Ser. B 103, 2195–2205 (2022). https://doi.org/10.1007/s40031-022-00819-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-022-00819-2

Keywords

Navigation