Skip to main content
Log in

The Efficacy of Generator Protection under Sudden Loss of Excitation using Offset-type MHO-relay

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

A synchronous generator is forced to asynchronous operation under sudden loss of excitation (LOE). Operation under LOE has many undesirable effects, for example, thermal injury of the faulted machine, poor voltage profile in its neighbourhood, pulsations in voltage and power etc. These effects are more pronounced for a salient pole hydrogenerator compared to a cylindrical pole turbo generator. For these reasons, sustained operation under LOE cannot be permitted for a long time and the faulted machine is to be switched off. The general practice is to use an off-set type mho-relay with an appropriate time delay to distinguish LOE from recoverable swings. In this paper, the performance variables under sudden field failure for a non-salient pole generator and its impedance looking from the terminals have been computed by specially constructed programs based on numerical methods. Taking the example of a 210 MW turbo generator set of Bharat Heavy Electricals Ltd., it has been established that the offset type mho-relay protection is adequate under all possible conditions of asynchronous operation following an LOE. A comparison has been made between the field directly short-circuited and the same closed through a properly chosen value of discharge resistance. It has been found that the use of discharge resistance is beneficial, but the relay operates even in its absence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

E, V:

Induced voltage, infinite bus voltage

Pref, Ru :

Reference power-setting, static droop

P, Ps, Pr :

Total, synchronous, reluctance power

Pas, Qas :

Asynchronous active/reactive power

re, Xe :

External resistance, leakage reactance to infinite bus

rf, rd :

Field/field discharge resistance

\(\text{T}_{\rm d}^{\prime } , \text{T}_{\rm do}^{\prime }\) :

D-axis SC/OC transient time constant

\(\text{T}_{\rm d}^{{{\prime \prime }}} ,\text{T}_{\rm do}^{{{\prime \prime }}}\) :

D-axis SC/OC subtransient time constant

\(\text{T}_{\rm q}^{{{\prime \prime }}} ,\text{T}_{\rm qo}^{{{\prime \prime }}}\) :

Q-axis SC/OC subtransient time constant

Tas, Ias :

Asynchronous torque/current

\(\text{V}_{\rm g} ,\text{I}_{\rm a} \angle \upphi\) :

Generator terminal voltage, armature current

Xd, Xq :

D-axis/Q-axis synchronous reactance

Xmd, xf :

D-axis magnetizing reactance, field leakage reactance

xa, ω:

Armature leakage reactance, angular frequency, r/s

\(\text{X}_{\rm d}^{\prime }\) :

D-axis transient reactance

\(\text{X}_{\rm d}^{{{\prime \prime }}} ,\text{X}_{\rm q}^{{{\prime \prime }}}\) :

D-axis/Q-axis sub-transient reactance

δ, s:

Power angle, slip

References

  1. A. Maity, K. Bhattacharya, A.N. Sanyal, Asynchronous operation of synchronous generators under field failure. IEEE Xplore. 1–6, (2014). doi: 10.1109/ACES.2014.6808006, Print ISBN: 978-1-4799-3893-3

  2. V. Venikov, Transient Processes in Electric Power System (MIR Publishers, 1977)

  3. N. Sanyal, S. Chowdhuri, S. Royburman, Effect of loss of excitation in interconnected power system, CPRI conference paper, IISC, Bangalore, 1988

  4. P.J. Moore, A. Stangenberg, An investigation into the impedance characteristics of a synchronous generator under loss of excitation condition. EMPD’98 2, 619–624 (1998)

    Google Scholar 

  5. R. Conrad, St. Pierre, Loss-of-excitation protection for synchronous generators on isolated systems. IEEE Trans. Ind. Appl. IA-21(1), 81–90 (1985)

    Article  Google Scholar 

  6. J. Berdy, Loss of excitation protection for modern synchronous generators. IEEE Trans. Power Appar. Syst. 94, 1457–1463 (1975)

    Article  Google Scholar 

  7. L. Li, S. Caixin, M. Daohuai, Study on the excitation protection and control of synchronous generator based on the δ and s, in IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific Dalian, China (2005), pp. 1–4

  8. P. Mahdi et al., Generator loss of field and its effects on voltage stability in power systems, paper no. O-130, international conference on electrical engineering, 2008

  9. D.C. Lee, P. Kundur, R.D. Brown, A high speed, discriminating generator loss of excitation protection. IEEE Trans. Power Appar. Syst. PAS-98(6), 1895–1899 (1979)

    Article  Google Scholar 

  10. Bharat Heavy Electricals Ltd., Operating manual on 210 MW turbogenerator-set

  11. P.S.R. Murty, Modelling of Power System Components (B.S. Publications, India, 2008)

  12. V. Rajaraman, Computer-Oriented Numerical Methods (Prentice Hall, India, 2006)

  13. D.P. Kothari, I.J. Nagrath, Power System Engineering, 2nd edn. (TMH, 2008)

  14. B. Adkins, R.G. Harley, Generalized Theory of AC Machines (Chapman & Hall, 1975)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arabinda Das.

Additional information

All quantities are in p.u. unless otherwise mentioned. The time-constants are in second.

Subscript ‘e’ has been used for parameters inclusive of external impedance, later on dropped off for convenience remembering that the values include external impedance to infinite bus; subscript ‘m’ has been used for modified values.

Appendix

Appendix

Algorithm for numerical solution of Eq. 8 using Newton–Raphson method is given below:

Step-1:

\({\text{Read}}\,\,\text{P}_{\rm ref} ,\text{V},\text{X}_{\rm d} ,\text{X}_{\rm d}^{\prime } ,\text{X}_{\rm d}^{{{\prime \prime }}} ,\text{X}_{\rm q} ,\text{X}_{\rm q}^{{{\prime \prime }}} ,\text{T}_{\rm d}^{'} ,\text{T}_{\rm d}^{{{\prime \prime }}} ,\text{T}_{\rm q}^{{{\prime \prime }}} ,\text{f},\text{r}_{\rm f} ,\text{r}_{\rm d} ,\text{X}_{\rm e} ,\text{R}_{\rm u}\)

Step-2:

\(\text{X}_{\rm de} \leftarrow \text{X}_{\rm d} + \text{X}_{\rm e} ;\text{X}_{\rm qe} \leftarrow \text{X}_{\rm q} + \text{X}_{\rm e} ;\text{X}_{\rm de}^{\prime } \leftarrow \text{X}_{\rm d}^{\prime } + \text{X}_{\rm e} ;\text{X}_{\rm de}^{{{\prime \prime }}} \leftarrow \text{X}_{\rm d}^{{{\prime \prime }}} + \text{X}_{\rm e} ;\text{X}_{\rm qe}^{{{\prime \prime }}} \leftarrow \text{X}_{\rm q}^{{{\prime \prime }}} + \text{X}_{\rm e}\)

Step-3:

\(\text{T}_{\rm do}^{\prime } \leftarrow \text{T}_{\rm d}^{\prime } \text{X}_{\rm d} /\text{X}_{\rm d}^{\prime } ;\text{T}_{\rm do}^{\prime \prime } \leftarrow \text{T}_{\rm d}^{\prime \prime } \text{X}_{\rm d}^{\prime } /\text{X}_{\rm d}^{\prime \prime } ;\text{T}_{\rm qo}^{\prime \prime } \leftarrow \text{T}_{\rm q}^{\prime \prime } \text{X}_{\rm q}^{\prime } /\text{X}_{\rm q}^{\prime \prime } ;\text{T}_{\rm dom}^{\prime } \leftarrow \text{T}_{\rm do}^{\prime } \text{r}_{\rm f} /(\text{r}_{\rm f} + \text{r}_{\rm d} )\)

Step-4:

\(\text{T}_{\rm d}^{\prime } \leftarrow \text{T}_{\rm dom}^{\prime } \text{X}_{\rm de}^{\prime } /\text{X}_{\rm de} ;\text{T}_{\rm d}^{\prime \prime } \leftarrow \text{T}_{\rm do}^{\prime \prime } \text{X}_{\rm de}^{\prime \prime } /\text{X}_{\rm de}^{\prime } ;\text{T}_{\rm q}^{\prime \prime } \leftarrow \text{T}_{\rm qo}^{\prime \prime } \text{X}_{\rm qe}^{\prime \prime } /\text{X}_{\rm qe}\)

Step-5:

\(\text{k}_{\rm 1} \leftarrow \text{V}^{2} \text{T}_{\rm d}^{\prime } (1/\text{X}_{\rm de}^{\prime } - 1/\text{X}_{\rm de} )/2;\text{k}_{2} \leftarrow \text{V}^{2} \text{T}_{\rm d}^{\prime \prime } (1/\text{X}_{\rm de}^{\prime \prime } - 1/\text{X}_{\rm de}^{\prime } )/2;\text{k}_{3} \leftarrow \text{V}^{2} \text{T}_{\rm q}^{\prime \prime } (1/\text{X}_{\rm qe}^{\prime \prime } - 1/\text{X}_{\rm qe} )/2\)

Step-6:

\({\text{Initialize}}\,{\text{slip}},{\text{convergence}}\,{\text{constant}},\,{\text{maximum}}\,{\text{number}}\,{\text{of}}\,{\text{iteration}}:\text{s},\varepsilon ,\text{n}_{\hbox{max} }\)

Step-7:

\(\text{f} \leftarrow - \text{P}_{\rm ref} + \text{s}/\text{R}_{\rm u} + \text{s}(1 - \text{s})\left[ {\frac{{\text{k}_{1} }}{{1 + (\text{sT}_{\rm d}^{\prime } )^{2} }} + \frac{{\text{k}_{2} }}{{1 + (\text{sT}_{\rm d}^{\prime \prime } )^{2} }} + \frac{{\text{k}_{3} }}{{1 + (\text{sT}_{\rm q}^{\prime \prime } )^{2} }}} \right]\)

Step-8:

\(\text{f}^{\prime } \leftarrow 1/\text{R}_{\rm u} + \left[ {\frac{{\text{k}_{1} \{ 1 - 2 \text{s} - (\text{sT}_{\rm d}^{\prime } )^{2} \} }}{{\{ 1 + (\text{sT}_{\rm d}^{\prime } )^{2} \}^{2} }} + \frac{{\text{k}_{2} \{ 1 - 2 \text{s} - (\text{sT}_{\rm d}^{\prime \prime } )^{2} \} }}{{\{ 1 + (\text{sT}_{\rm d}^{\prime \prime } )^{2} \}^{2} }} + \frac{{\text{k}_{3} \{ 1 - 2 \text{s} - (\text{sT}_{\rm q}^{\prime \prime } )^{2} \} }}{{\{ 1 + (\text{sT}_{\rm q}^{\prime \prime } )^{2} \}^{2} }}} \right]\)

Step-9:

snew ← s − f/f

Step-10:

\(\text{If}\left| {\text{s}_{\rm new} - \text{s}} \right|\, < \,\varepsilon \,{\text{then}}\,{\text{goto}}\,{\text{step}}\,14\)

Step-11:

\({\text{count}} \leftarrow {\text{count}} + 1\)

Step-12:

\({\text{If}}\,{\text{count}} > \text{n}_{\hbox{max} } \,\,{\text{then}}\,{\text{goto}}\,{\text{step}}\,19\)

Step-13:

\(\text{s} \leftarrow \text{s}_{\rm new} :\,{\text{goto}}\,{\text{step}}\,7\)

Step-14:

s ← snew

Step-15:

\(\text{P}_{\rm as} = \text{s}(1 - \text{s})\left[ {\frac{{\text{k}_{1} }}{{1 + (\text{sT}_{\rm d}^{\prime } )^{2} }} + \frac{{\text{k}_{2} }}{{1 + (\text{sT}_{\rm d}^{\prime \prime } )^{2} }} + \frac{{\text{k}_{3} }}{{1 + (\text{sT}_{\rm q}^{\prime \prime } )^{2} }}} \right]\)

Step-16:

\(\text{Q}_{\rm as} = \text{s}\left[ {\frac{{\text{k}_{1} \text{sT}_{\rm d}^{\prime } }}{{1 + (\text{sT}_{\rm d}^{\prime } )^{2} }} + \frac{{\text{k}_{2} \text{sT}_{d}^{\prime \prime } }}{{1 + (\text{sT}_{\rm d}^{\prime \prime } )^{2} }} + \frac{{\text{k}_{3} \text{sT}_{\rm q}^{\prime \prime } }}{{1 + (\text{sT}_{\rm q}^{\prime \prime } )^{2} }}} \right]\)

Step-17:

Sas ← (P 2as  + Q 2as )1/2; Ias = Sas/V

Step-18:

\({\text{print}}\,\text{s},\text{P}_{\rm as} ,\text{Q}_{\rm as} ,\text{S}_{\rm as} ,\text{I}_{\rm as} :{\text{goto}}\,{\text{step}}\,20\)

Step-19:

\({\text{No}}\,{\text{convergence\,in}}\,'\text{n}_{\hbox{max} }'\,{\text{number}}\,{\text{of}}\,{\text{iterations}}.\,{\text{Try}}\,{\text{again}}\,{\text{changing}}\,{\text{initial}}\,{\text{value}}.\)

Step-20:

\({\text{stop:end}}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Dhar, S., Royburman, S. et al. The Efficacy of Generator Protection under Sudden Loss of Excitation using Offset-type MHO-relay. J. Inst. Eng. India Ser. B 98, 115–120 (2017). https://doi.org/10.1007/s40031-016-0228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-016-0228-6

Keywords

Navigation