Skip to main content
Log in

Nonlinear Finite Element Analysis of FRP Strengthened Reinforced Concrete Beams

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

This paper focuses on nonlinear analysis of parent and fiber reinforced polymer (FRP) strengthened reinforced concrete (RC) beam using general purpose finite element software, ANSYS. Further, it is aimed to investigate the suitability of different elements available in ANSYS library to represent FRP, epoxy and interface. 3-D structural RC solid element has been used to model concrete and truss element is employed for modeling the reinforcements. FRP has been modelled using 3-D membrane element and layered element with number of layers, epoxy is modelled using eight node brick element, and eight node layered solid shell is used to mathematically represent the concrete-FRP interface behavior. Initially, the validation of the numerical model for the efficacy of different elements (SOLID65 for concrete and LINK8 for reinforcement) and material models is carried out on the experimental beam reported in literature. The validated model, elements and material properties is used to evaluate the load–displacement and load–strain response behavior and crack patterns of the FRP strengthened RC beams. The numerical results indicated that significant improvement in the displacement in the strengthened RC beams with the advancement of cracks. The study shows that FRP with shell elements is recommended when single layer of FRP is used. When multi layered FRP is used, solid layered element can be a reasonably good choice whereas the epoxy matrix with linear solid element does not need further complicated model. Interfacial element makes the analysis minimally improved at the cost of complicated modeling issues and considerable computation time. Hence, for nonlinear analysis of usual strengthened structures, unless it is specifically required for, interface element may not be required and a full contact can be assumed at interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Kachlakev, M. Thomas, Y. Solomon, Report for Oregon Department of Transportation, Salem (2001)

  2. T.H. Almusallam, A.Y. Alsalloum, Compos. Eng. B 32, 609 (2001)

    Article  Google Scholar 

  3. H. Toutanji, L. Zhao, Y. Zhang, Eng. Struct. 28, 557 (2006)

    Article  Google Scholar 

  4. X. Lu, L. Ye, J.G. Teng, Eng. Struct. 27(4), 564 (2005)

    Article  Google Scholar 

  5. S.H. Hashemi, R. Rahgozar, A. Maghsoudi, Am. J. Appl. Sci. 4(9), 725 (2007)

    Article  Google Scholar 

  6. H. Brittan, H. Toutanji, N. Mabry, in Proceedings of the First Middle East Conference on Smart Monitoring, Assessment And Rehabilitation of Civil Structures, Feb 8–10, Dubai, UAE (2011)

  7. G. Shi, H. Zhang, in International Conference on Composite Materials ICCM-17, Edinburgh, Scotland July 27–31 (2009)

  8. Y.W. Zhou, Y.F. Wu, J.G. Teng, A.Y.T. Leung, Cement Concr. Compos. 31(9), 682 (2009)

    Article  Google Scholar 

  9. I. Saifullah, M. Nasir-uz-Zaman, S.M.K. Uddin, M.A. Hossain, M.H. Rashid, Int. J. Eng. Technol. 11, 188 (2011)

    Google Scholar 

  10. R. Hawileh, Constr. Build. Mater. 27, 461 (2012)

    Article  Google Scholar 

  11. R. Hawileh, J. Abdalla, M. Tanarslan, M. Naser, Comput. Concr. Int. J 8(12), 193 (2011)

    Article  Google Scholar 

  12. R. Hawileh, T. El-Maaddawy, M. Naser, Mater. Des. 42, 378 (2012)

    Article  Google Scholar 

  13. R. Hawileh, M.Z. Naser, J.A. Abdalla, Compos. B 45(1), 1722 (2013)

    Article  Google Scholar 

  14. S. Sasmal, B. Novák, K. Ramanjaneyulu, V. Srinivas, C. Roehm, N. Lakshmanan, N.R. Iyer, Compos. Struct. 93(6), 1561 (2011)

    Article  Google Scholar 

  15. A. Godat, P. Labossière, K.W. Neale, O. Chaallal, Comput. Struct. 92–93, 269 (2012)

    Article  Google Scholar 

  16. S. Sasmal, C.P. Khatri, K. Ramanjaneyulu, V. Srinivas, Constr. Build. Mater. 40, 1097 (2013)

    Article  Google Scholar 

  17. ANSYS, Inc. ANSYS 10.0, Canonsburg, PA, USA, (2005)

  18. P. Desayi, S. Krishnan, J. Am. Concr. Inst. 61, 345 (1964)

    Google Scholar 

  19. J.M. Gere, S.P. Timoshenko, Mechanics of Materials (PWS Publishing, Boston, 1997)

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-Structural Engineering Research Centre, Chennai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sasmal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasmal, S., Kalidoss, S. & Srinivas, V. Nonlinear Finite Element Analysis of FRP Strengthened Reinforced Concrete Beams. J. Inst. Eng. India Ser. A 93, 241–249 (2012). https://doi.org/10.1007/s40030-013-0028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-013-0028-9

Keywords

Navigation