Skip to main content
Log in

Frequency of Antimicrobial-Resistant Genes in Salmonella enteritidis Isolated from Traditional and Industrial Iranian White Cheeses

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Iranian white cheese is one of the most important kinds of cheese produced in large scale with high consumption in the country. This dairy product transmits bacterial pathogens like Salmonella spp. Antibiotic resistant Salmonella are widespread in the world. This study was performed to evaluate the frequency of antimicrobial-resistant Salmonella enteritidis and related genes isolated from traditional and industrial Iranian white cheeses. A total of 200 traditional and industrial Iranian white cheeses were collected within Chaharmahal Va Bakhtiari province (southwest Iran). After culturing on specific media using standard bacterial tests the Salmonella sp. was isolated. For specific detection of S. enteritidis from other Salmonella strains sefA gene was studied. Finally, the antibiotic susceptibility patterns were investigated. Results showed that 17 % of cheese samples were contaminated by Salmonella and 5.5 % of specimens by S. enteritidis. The frequencies of resistance genes including tetA, tetB, tetC, cat3, and floR in isolated S. enteritidis were 36.4, 54.5, 81.8, 54.5, and 36.4 %, respectively. All isolated S. enteritidis were susceptible to ciprofloxacin, cefotaxime, and ceftazidime (100 %). In addition, most of them were resistance to chloramphenicol (64 %) and susceptible to gentamicin (98 %). The Salmonella contamination was more frequent in traditional Iranian white cheeses (11.5 %) as compared to industrial (5.5 %) samples (p < 0.05). As compared to industrial samples, high level of resistant genes in Salmonella enteritidis isolated from traditional Iranian white cheeses were observed (p < 0.05). Therefore, traditional Iranian white cheeses are important source of Salmonella contamination in the country hence examination of dairy products for the presence of this pathogen is important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolfe BE, Button JE, Santarelli M, Dutton RJ (2014) Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158(2):422–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Leitner G, Merin U, Silanikove N (2011) Effects of glandular bacterial infection and stage of lactation on milk clotting parameters: comparison among cows, goats and sheep. Int Dairy J 21(4):279–285

    Article  CAS  Google Scholar 

  3. Marcus SL, Brumell JH, Pfeifer CG, Finlay BB (2000) Salmonella pathogenicity islands: big virulence in small packages. Microb Infect 2(2):145–156

    Article  CAS  Google Scholar 

  4. Zhang XL, Jeza VT, Pan Q (2008) Salmonella typhi: from a human pathogen to a vaccine vector. Cell Mol Immunol 5(2):91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Touch V, Hayakawa S, Yamada S, Kaneko S (2004) Effects of a lactoperoxidase–thiocyanate–hydrogen peroxide system on Salmonella enteritidis in animal or vegetable foods. Int J Food Microbiol 93(2):175–183

    Article  CAS  PubMed  Google Scholar 

  6. Guerin MT, Martin SW, Darlington GA, Rajic A (2005) A temporal study of Salmonella serovars in animals in Alberta between 1990 and 2001. Can J Vet Res 69(2):88–99

    PubMed  PubMed Central  Google Scholar 

  7. Thorns CJ (2000) Bacterial food-borne zoonoses. Rev Sci Tech 19:226–239

    CAS  PubMed  Google Scholar 

  8. Malorny B, Bunge C, Helmuth R (2007) A real-time PCR for the detection of Salmonella enteritidis in poultry meat and consumption eggs. J Microbiol Meth 70(20):245–251

    Article  CAS  Google Scholar 

  9. Shaigan Nia S, Rostami F, Safarpour Dehkordi F, Rahimi E, Yahaghi E, Khodaverdi Darian E, Bagheri Moghadam M (2014) Isolation and evaluation virulence factors of Salmonella typhimurium and Salmonella enteritidis in milk and dairy products. Iran J Med Microbiol 8(1):54–61

    Google Scholar 

  10. Huang TM, Chang YF, Chang CF (2004) Detection of mutations in the gyrA gene and class I integron from quinolone-resistant Salmonella enterica serovar Choleraesuis isolates in Taiwan. Vet Microbiol 100:247–254

    Article  CAS  PubMed  Google Scholar 

  11. Rodulfo H, Donato MD, Luiggi J, Michelli E, Millán A, Michelli M (2012) Molecular characterization of Salmonella strains in individuals with acute diarrhea syndrome in the State of Sucre, Venezuela. Rev Soc Bras Med Trop 45(3):329–333

    Article  PubMed  Google Scholar 

  12. Fierer J, Okamoto S, Banerjee A, Guiney DG (2012) Diarrhea and colitis in mice require the Salmonella pathogenicity island 2-encoded secretion function but not SifA or Spv effectors. Infect Immun 80(10):3360–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colak H, Hampikyan H, Bingol EB, Ulusoy B (2007) Prevalence of L. monocytogenes and Salmonella spp. in Tulum cheese. Food Control 18(5):576–579

    Article  Google Scholar 

  14. Angelidis AS, Chronis EN, Papageorgiou DK, Kazakis II, Arsenoglou KC, Stathopoulos GA (2006) Non-lactic acid, contaminating microbial Xora in ready-to-eat foods: a potential food-quality index. Food Microbiol 23(1):95–100

    Article  CAS  PubMed  Google Scholar 

  15. Kawasaki S, Fratamico P (2011) Development of the multiplex PCR detection kit for Salmonella spp., Listeria monocytogenes, and Escherichia coli O157:H7. Jpn Agric Res Q 45(1):77–81

    Article  Google Scholar 

  16. Hadjinicolaou AV, Demetriou VL, Emmanuel MA, Kakoyiannis CK, Kostrikis LG (2009) Molecular beacon-based real-time PCR detection of primary isolates of Salmonella Typhimurium and Salmonella Enteritidis in environmental and clinical samples. BMC Microbiol 9(1):97

    Article  PubMed  PubMed Central  Google Scholar 

  17. Addis Z, Kebede N, Sisay Z, Alemayehu H, Wubetie A, Kassa T (2011) Prevalence and antimicrobial resistance of Salmonella isolated from lactating cows and in contact humans in dairy farms of Addis Ababa: a cross sectional study. BMC Infect Dis 11:222

    Article  PubMed  PubMed Central  Google Scholar 

  18. Faldynova M, Pravcova M, Sisak F, Havlickova H, Kolackova I, Cizek A, Karpiskova R, Rychlik I (2003) Evolution of antibiotic resistance in Salmonella enterica Serovar typhimurium strains isolated in the Czech Republic between 1984 and 2002. Antimicrob Agents Chemother 47(6):2002–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramsey MH, Ellison SLR, Czichos H, Hässelbarth W, Ischi H, Wegscheider W, Brookman B, Zschunke A, Frenz H, Golze M (2011) Quality in measurement and testing. Springer Handbook of Metrology and Testing, pp 39–141

  20. Garrity G, Brenner DJ, Krieg NR, Staley JR (2005) Bergey’s Manual of Systematic Bacteriology. Vol 2, Part B, 2nd Edition, US, Springer

  21. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 148–190

    Google Scholar 

  22. Pan TM, Liu YJ (2002) Identification of Salmonella Enteritidis isolate by polymeras chain reaction and multiplex polymerase chain reaction. J Microbiol Immuno Infect 35:147–151

    CAS  Google Scholar 

  23. Woodward MJ, Kirwan SE (1996) Detection of Salmonella Enteriitidis in eggs by the polymerase chain reaction. Vet Rec 138:411–413

    Article  CAS  PubMed  Google Scholar 

  24. Ma M, Wang H, Yu Y, Zhang D, Liu S (2007) Detection of antimicrobial resistance genes of pathogenic Salmonella from swine with DNA microarray. J Vet Diagn Investig 19(2):161–167

    Article  Google Scholar 

  25. Chuanchuen R, Padungtod P (2009) Antimicrobial resistance genes in Salmonella enterica isolates from poultry and swine in Thailand. J Vet Med Sci 71(10):1349–1355

    Article  CAS  PubMed  Google Scholar 

  26. Clinical and Laboratory Standards Institute (CLSI) (2013) Clinical and Laboratory Standards Institute Performance standards for antimicrobial susceptibility testing: 23rd informational supplement (M100-S23). CLSI, Wayne

    Google Scholar 

  27. Chuanchuen R, Ajariyakhajorn K, Koowatananukul C, Wannaprasat W, Khemtong S, Samngamnim S (2010) Antimicrobial resistance and virulence genes in Salmonella enterica isolates from dairy cows. Foodborne Pathog Dis 7(1):63–69

    Article  CAS  PubMed  Google Scholar 

  28. White DG, Zhao S, Sudler R, Ayers S, Friedman S, Chen S, McDermott PF, McDermott S, Wagner DD, Meng J (2001) The isolation of antibiotic-resistant Salmonella from retail ground meats. N Engl J Med 345(16):1147–1154

    Article  CAS  PubMed  Google Scholar 

  29. Kaan Tekinşen K, Özdemir Z (2006) Prevalence of foodborne pathogens in Turkish Van otlu (Herb) cheese. Food Control 17(9):707–711

    Article  Google Scholar 

  30. Hleba L, Kačániová M, Pochop J, Lejková J, Čuboň J, Kunová S (2011) Antibiotic resistance of Enterobacteriaceae genera and Salmonella spp., Salmonella enterica ser. typhimurium and enteritidis isolated from milk, cheese and other dairy products from conventional farm in Slovakia. J Microbiol Biotechnol Food Sci 1(1):1–20

    CAS  Google Scholar 

  31. Mazurek J, Pusz P, Bok E, Stosik M, Baldy-Chudzik K (2013) The phenotyicand genotypic characteristics of antibiotic resistance in Esherichia coli populations isolated from farm animals with different exposure to antimicrobial agents. Pol J Microbiol 62(2):173–179

    CAS  PubMed  Google Scholar 

  32. Akiyama T, Presedo J, Khan AA (2013) The tetA gene decreases tigecycline sensitivity of Salmonella enterica isolates. lnt J Antimicrob Agents 42(2):133–140

    Article  CAS  Google Scholar 

  33. Ahmed AM, Shimamoto T, Shimamoto T (2014) Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt. Int J Food Microbiol 189:39–44

    Article  CAS  PubMed  Google Scholar 

  34. Marrero-Ortiz R, Han J, Lynne AM, David DE, Stemper ME, Farmer D, Burkhardt W, Nayak R, Foley SL (2012) Genetic characterization of antimicrobial resistance in Salmonella enterica serovars isolated from dairy cattle in Wisconsin. Food Res Int 45(2):962–967

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out in Biotechnology Research Center of Islamic Azad University of Shahrekord Branch in Iran (Grant no. 93/12/14). The authors would like to thank all the staff members of this department for their sincere support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Doosti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doosti, A., Doosti, E., Rahimi, E. et al. Frequency of Antimicrobial-Resistant Genes in Salmonella enteritidis Isolated from Traditional and Industrial Iranian White Cheeses. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87, 73–80 (2017). https://doi.org/10.1007/s40011-015-0572-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-015-0572-3

Keywords

Navigation