Skip to main content
Log in

Identification of Anchored Simple Sequence Repeat Markers Associated with Calcium Content in Finger Millet (Eleusine coracana)

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Staple food crops, mainly cereals, generally lack key mineral nutrients like calcium whose deficiency is a significant problem in human populations. Finger millet, also known as ragi, shows an extraordinary accumulation of grain calcium amongst cereals and thus could be a target crop for genetic enhancement programs. To understand the genetic basis of high calcium content in finger millet grains, 113 genotypes having calcium contents up to 450 mg/100 g of seed were screened using 23 anchored-SSR primers designed from calcium transporters and sensors. Fourteen anchored Simple Sequence Repeat markers were found polymorphic and produced a total of 83 alleles among the 113 accessions assayed. The number of alleles per locus ranged from 2 to 11. The average genetic diversity over all SSR loci was 0.22 with a mean polymorphic information content value of 0.18. The dendrogram analyses grouped the genotypes in seven different clusters according to their calcium contents. Association analyses using tools such as STRUCTURE and TASSEL revealed at least 9 markers to be significantly associated with the calcium trait. Moreover, cross-validation on a confirmation population could reconfirm the association of the markers. The findings however provide a basis for future research in genetic improvement of finger millet in terms of nutrition breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. National Research Council (1996) Lost crops of Africa: grains board on science and technology for international development. National Academy Press, Washington, DC

    Google Scholar 

  3. Panwar P, Nath M, Yadav VK, Kumar A (2010) Comparative evaluation of genetic diversity using RAPD SSR and cytochrome P450 gene based markers with respect to calcium content in finger millet (Eleusine coracana L. Gaertn). J Genet 89(2):121–133

    Article  CAS  PubMed  Google Scholar 

  4. Maser P, Thomine S, Schroeder JI et al (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    Article  CAS  PubMed  Google Scholar 

  6. Shigaki T, Hirschi KD (2006) Diverse functions and molecular properties emerging for CAX. Plant Biol 8(4):419–429

    Article  CAS  PubMed  Google Scholar 

  7. Yuasa K, Maeshima M (2001) Organ specificity of a vacuolar Ca2+-binding protein RVCaB in radish and its expression under Ca+2-deficient conditions. Plant Mol Biol 47:633–640

    Article  CAS  PubMed  Google Scholar 

  8. Akesson A, Persson S, Love J, Boss WF, Widell S, Sommarin M (2005) Overexpression of the Ca+2-binding protein calreticulin in the endoplasmic reticulum improves growth of tobacco cell suspensions (Nicotiana tabacum) in high-Ca+2 medium. Physiol Plant 123:92–99

    Article  CAS  Google Scholar 

  9. Hwang I, Sze H, Harper JF (2000) A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci USA 97:6224–6229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Klimecka M, Muszynska G (2007) Structure and functions of plant calcium-dependent protein kinases. Acta Biochim Pol 54(2):219–233

    CAS  PubMed  Google Scholar 

  11. Goel A, Gaur VS, Arora S, Gupta S, Kumar A (2012) In silico analysis of expression data for identification of genes involved in spatial accumulation of calcium in developing seeds of rice. OMICS 16(7–8):402–413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Garcia-Oliveira AL, Tan LB, Fu YC, Sun CQ (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51:84–92

    Article  CAS  PubMed  Google Scholar 

  13. Du J, Zeng D, Wang B, Qian Q, Zheng S, Ling HQ (2012) Environmental effects on mineral accumulation in rice grains and identification of ecological specific QTLs. Environ Geochem Health 35(2):161–170

    Article  PubMed  Google Scholar 

  14. Genc Y, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, McDonald GK (2008) Quantitative trait loci analysis of zinc efficiency and grain zinc concentration in wheat using whole genome average interval mapping. Plant Soil 310:67–75

    Article  CAS  Google Scholar 

  15. Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119(2):353–369

    Article  CAS  PubMed  Google Scholar 

  16. Šimić D, Drinić SM, Zdunić Z, Jambrović A, Ledenčan T, Brkić J, Brkić A, Brkić I (2012) Quantitative trait loci for biofortification traits in maize grain. J Hered 103(1):47–54

    Article  PubMed  Google Scholar 

  17. Cichy KA, Caldas GV, Snapp SS, Blair MW (2009) QTL analysis of seed iron, zinc, and phosphorus levels in an Andean bean population. Crop Sci 49(5):1742–1750

    Article  CAS  Google Scholar 

  18. Blair MW, Astudillo C, Grusak MA, Graham R, Beebe SE (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breed 23(2):197–207

    Article  CAS  Google Scholar 

  19. Kwon SJ, Brown AF, Hu J, McGee R, Watt C, Kisha T et al (2012) Genetic diversity, population structure and genome-wide marker-trait association analysis emphasizing seed nutrients of the USDA pea (Pisum sativum L.) core collection. Genes Genomics 34(3):305–320

    Article  CAS  Google Scholar 

  20. Sukumaran S, Xiang W, Bean SR, Pedersen JF, Kresovich S, Tuinstr MR et al (2012) Association mapping for grain quality in a diverse sorghum collection. Plant Genome 5(3):126–135

    Article  CAS  Google Scholar 

  21. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Maniatis T, Sambrook J, Fritsch EF (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  23. Temnykh S, Declerk G, Lukashover A, Lipovich L, Cartinhour S, McCouch SR (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations and genetic marker potential. Genome Res 11:1441–1452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Barbeau WE, Hilu KW (1993) Protein, calcium, iron and amino acid content of selected wild and domesticated cultivars of finger millet. Plant Foods Hum Nutr 43:97–104

    Article  CAS  PubMed  Google Scholar 

  25. Rohlf FJ (1997) NTSYS-pc numerical taxonomy and multivariate analysis system, version 20. Exeter, New York

    Google Scholar 

  26. Liu K, Muse M (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  27. Yap IV, Nelson RJ (1996) Winboot: A program for performing bootstrap analysis for binary data to determine the confidence limits of UPGMA-based dendrograms. In: International Rice Research Institute 14

  28. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 136:343–359

    Google Scholar 

  29. Peakall R, Smouse PE (2006) GenAIEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  30. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  33. Babu BK (2012) Molecular markers: concept and importance for crop improvement. Biotech Today 2:4398–4406

    Google Scholar 

  34. Tiwari VK, Rawat N, Kumari N, Kumar S, Randhawa GS, Dhaliwal HS (2010) Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor Appl Genet 121:259–269

    Article  CAS  PubMed  Google Scholar 

  35. Dida MM, Wanyera N, Dunn MLH, Bennetzen JL, Devos KM (2008) Population structure and diversity in finger millet Eleusine coracana germplasm. Trop Plant Biol 1:131–141

    Article  Google Scholar 

  36. Prasad R (2012) Micro mineral nutrient deficiencies in humans, animals and plants and their amelioration. Proc Nat Acad Sci India Sec B 82(2):225–233

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Department of Biotechnology (DBT), Govt. of India, for providing financial support in the form of Programme Mode Support for Research and Development in Agricultural Biotechnology at G. B. Pant University of Agriculture and Technology, Pantnagar (Grant No. BT/PR7849/AGR/02/374/2006). The authors thank the Ranichauri Hill Campus, G. B. Pant University of Agriculture and Technology and UAS Bangalore for providing the seed samples of the germplasm analysed in present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 195 kb)

Supplementary material 2 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Yadav, S., Panwar, P. et al. Identification of Anchored Simple Sequence Repeat Markers Associated with Calcium Content in Finger Millet (Eleusine coracana). Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 85, 311–317 (2015). https://doi.org/10.1007/s40011-013-0296-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0296-1

Keywords

Navigation