Skip to main content
Log in

Mutagenesis of Alkalophilic Cellulosimicrobium sp. CKMX1 for Hyper-Production of Cellulase-Free Xylanase in Solid State Fermentation of Apple Pomace

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Cellulosimicrobium sp. CKMX1 isolated from mushroom compost, produced extracellular endo-1,4-β-xylanase (EC 3.2.1.8) at 35 °C and pH 8.0. In this study the wild strain of Cellulosimicrobium sp. CKMX1 was improved for enhanced xylanase production by using physical mutagen i.e. ultraviolet rays and chemical mutagens i.e. ethidium bromide (0.1–2.0 mg/ml) and ethyl methanesulfonate (5–70 mg/ml). Mutant (E5) with hyper xylanase production was obtained after treating wild strain with ethyl methanesulfonate on the basis of xylanase activity index and xylanase activity in liquid medium. Mutant E5 (568 U/g dry bacterial pomace) resulted in 35.89 % increase over wild strain (418 U/g dry bacterial pomace) in xylanase activity in solid state fermentation under optimized conditions. Further optimization of enzyme production by Cellulosimicrobium sp. CKMX1 mutant, E5 was carried out using central composite design following response surface methodology with four independent variables (yeast extract, ammonium nitrate, Tween 20 and carboxymethyl cellulose), which resulted in further increase of 1.63-fold in xylanase production (927.65 U/g dry bacterial pomace).The effectiveness of cellulase-free hyper xylanase producing mutant E5 to work in alkaline conditions indicates its possible applicability in paper and pulp industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kohli U, Nigam P, Singh D, Chaudhary K (2001) Thermostable, alkalophilic and cellulase free xylanase production by Thermoactinomycesthalophilus subgroup C. Enzyme Microb Technol 28:606–610

    Article  CAS  PubMed  Google Scholar 

  2. Shah AR, Madamwar D (2005) Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Proc Biochem 40:1763–1771

    Article  CAS  Google Scholar 

  3. Xu ZH, Bai YL, Xu X, Shi JS, Tao WY (2005) Production of alkali-tolerant cellulase-free xylanase by Pseudomonas sp. WLUN024 with wheat bran as the main substrate. World J Microbiol Biotechnol 21:575–581

    Article  CAS  Google Scholar 

  4. Mullai P, Fathima NSA, Rene ER (2010) Statistical analysis of main and interaction effects to optimize xylanase production under submerged cultivation conditions. J Agric Sci 2:144–153

    Google Scholar 

  5. Sanghi A, Garg N, Kuhar K, Kuhad RC, Gupta VK (2009) Enhanced production of cellulase-free xylanase by alkalophilic Bacillus subtilis ASH and its application in biobleaching of kraft pulp. Bioresour Technol 4(3):1109–1129

    CAS  Google Scholar 

  6. Dhiman SS, Garg G, Mahajan R, Garg N, Sharma J (2009) Single lay out and mixed lay out enzymatic processes for bio-bleaching of kraft pulp. Bioresour Technol 100:4736–4741

    Article  CAS  PubMed  Google Scholar 

  7. Ninawe S, Kapoor M, Kuhad RC (2007) Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour Technol 99(5):1252–1258

    Article  PubMed  Google Scholar 

  8. Ellaiah P, Prabhakar T, Ramakrishna B, Taleb AT, Adinarayana K (2002) Strain improvement of Aspergillus niger for the production of lipase. Indian J Microbiol 42:151–153

    Google Scholar 

  9. Haq I, Tasneem M, Raana K, Khan A, Mukhtar H, Javed M (2004) Optimization of cultural conditions for the production of xylanase by chemically mutated strain of Aspergillus niger GCBCX-20. Intern J Agric Biol 6(6):1115–1118

    CAS  Google Scholar 

  10. Babu KP, Satyanarayana T (1995) Αlpha amylase production by thermophilic Bacillus coagulans in solid state fermentation. Proc Biochem 30:305–309

    Article  CAS  Google Scholar 

  11. Ashraf H, Haq I, Qadeer MA, Iqbal J (2001) Screening of Bacillus licheniformis mutants for improved production of alpha amylase. Pak J Bot 33:517–525

    Google Scholar 

  12. Gupta U, Kar R (2009) Xylanase production by a thermo-tolerant Bacillus sp. under solid state and submerged fermentation. Braz Arch Biol Technol 52(6):1363–1371

    Article  CAS  Google Scholar 

  13. Annamalai N, Thavasi R, Jayalakshmi S, Balasubramanian T (2009) Thermostable and alkaline tolerant xylanase production by Bacillus subtilis isolated from marine environment. Indian J Biotechnol 8:291–297

    CAS  Google Scholar 

  14. Nagar SK, Gupta VK, Kumar D, Kumar L, Kuhad RC (2010) Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J Indian Microbiol Biotechnol 37:71–83

    Article  CAS  Google Scholar 

  15. Archana A, Satyanarayana T (1997) Xylanase production by thermophilic Bacillus licheniformis A99 in solid state fermentation. Enzyme Microb Technol 21(1):12–17

    Article  CAS  Google Scholar 

  16. Gessesse A, Mamo G (1999) High level xylanase production by an alkalophilic Bacillus sp. by using solid state fermentation. Enzyme Microb Technol 25:68–72

    Article  CAS  Google Scholar 

  17. Heck J, Flores S, Hertzm P, Ayub M (2005) Optimization of cellulase-free xylanase activity by Bacillus coagulans BL69 in solid state cultivation. Proc Biochem 40:107–112

    Article  CAS  Google Scholar 

  18. Battan B, Sharma J, Kuhad RC (2006) High level of xylanase production by alkalophilic Bacillus pumilus ASH under solid state fermentation. World J Microbiol Biotechnol 22:1281–1287

    Article  CAS  Google Scholar 

  19. Sindhu I, Chhibber S, Capalash N, Sharma P (2006) Production of cellulase free xylanase from Bacillus megateriumby solid state fermentation for biobleaching of pulp. Curr Microbiol 853:167–172

    Article  Google Scholar 

  20. Ghanem NB, Yusef HH, Mahrouse HK (2000) Production of Aspergillus terreus xylanase in solid state cultures: application of the Plackett–Burman experimental design to evaluate nutritional requirements. Bioresour Technol 73:113–121

    Article  CAS  Google Scholar 

  21. Bocchini DA, Alves-Prado HF, Baida LC, Roberto IC, Gomes E, Da Silva R (2002) Optimization of xylanase production by Bacillus circulans D1 in submerged fermentation using response surface methodology. Process Biochem 38:727–731

    Article  CAS  Google Scholar 

  22. Lo YC, Saratale GD, Cheu WM, Bai MD, Chang JS (2009) Isolation of cellulose hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzyme Microb Technol 44:417–425

    Article  CAS  Google Scholar 

  23. Nasser NH, Ali AM, Keera AA (2010) Xylanase production by Streptomyces lividans and its application on waste paper. Aust J Basic Appl Sci 4(6):1358–1368

    Google Scholar 

  24. Singh A, Kuhad RC, Kumar M (1995) Xylanase production by a hyperxylanolytic mutant of Fusarium oxysporum. Enzyme Microb Technol 17:551–553

    Article  CAS  Google Scholar 

  25. Dubey K, Johri BN (1987) Xylanolytic activity of thermophile Sporotrichum sp. and Mycelipthora thermophilum. Indian Acad Sci 97(3):247–255

    CAS  Google Scholar 

  26. Miller GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugars. Annu Chem 31:426–428

    Article  CAS  Google Scholar 

  27. Lowry DH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  28. Walia A, Mehta P, Chauhan A, Shirkot CK (2012) Optimization of cellulose-free xylanase production by alkalophilic Cellulosimicrobium sp. CKMX1 in solid state fermentation of apple pomace using central composite design and response surface methodology. Ann Microbiol 63:187–198

    Article  Google Scholar 

  29. Chadha BS, Gulati H, Minhas M, Saini HS, Singh N (2004) Phytase production by the thermophilic fungus Rhizomucor pusillus. World J Microbiol Biotechnol 20:105–109

    Article  CAS  Google Scholar 

  30. Kuhad RC, Manchanda M, Singh A (1998) Optimization of xylanase production by a hyperxylanolytic mutant strain of Fusarium oxysporum. Proc Biochem 33:641–647

    Article  CAS  Google Scholar 

  31. Bakri Y, JawharM Arabi MIE (2008) Improvement of xylanase production by Cochliobolus sativus in submerged culture. Food Technol Biotechnol 46(1):116–118

    CAS  Google Scholar 

  32. Subramaniyan S, Sandhia GS, Prema P (2001) Biotech control of xylanase production without protease activity in Bacillus sp. by selection of nitrogen source. Biotechnol Lett 23:369–371

    Article  CAS  Google Scholar 

  33. Gaedner JE, Simmons JE, Snustad DP (1991) Principal of genetics, 8th edn. Wiley, New York, pp 303–304

    Google Scholar 

  34. Haq I, Ali S, Saleem A, Javed MM (2009) Mutagenesis of Bacillus licheniformis through ethyl methanesufonate for alpha amylase production. Pak J Bot 41(3):1489–1498

    Google Scholar 

  35. Hamad A, Haq I, Qadeer MA, Javed I (2001) Screening of Bacillus licheniformis mutants for improved production of alpha-amylase. Pak J Bot 33:23–36

    Google Scholar 

  36. Kotchoni SO, Shonukan OO, Gachomo WE (2003) Bacillus pumilusBpCRI 6, a promising candidate for cellulase production under conditions of catabolite repression. Afr J Biotechnol 2(6):140–146

    CAS  Google Scholar 

  37. Shafique S, BajwaR Shafique S (2009) Mutation of Alternaria tenuissima FCBP-252 for hyper active α-amylase. Indian J Exp Biol 47:591–596

    CAS  PubMed  Google Scholar 

  38. Steiner J, Carmona P, Ponce C, Berti M, Eyzaguirre J (1995) Short communication: isolation of mutants of Penicillium purpurogenum with enhanced xylanase and β-xylosidase production. World J Microbiol Biotechnol 14:589–590

    Article  Google Scholar 

  39. Mayorga RL, Ponce NT (1998) Isolation of a hyperxylanolytic Cellulomonas flavigena mutant growing on continuous culture on sugar cane bagasse. Biotechnol Lett 20:443–446

    Article  Google Scholar 

  40. Chand P, Aruna A, Maqsood AM, Rao LV (2005) Novel mutation method for increased cellulase production. J Appl Microbiol 28:606–610

    Google Scholar 

  41. Blakeman JP, McCracken AR, Seaby DA (1988) Changes brought about in solid substrate after fermentation of mixtures of cereals and pulses with Rhizopusoryzae. J Food Sci Agric 45:109–118

    Article  CAS  Google Scholar 

  42. Walia A, Mehta P, Chauhan A, Shirkot CK (2012) Production of alkalophilic xylanases by Paenibacillus polymyxa CKWX1 isolated from decomposing wood. Proc Natl Acad Sci India. doi:10.1007/s40011-012-0122-1

    Google Scholar 

  43. Yu X, Hallett SG, Sheppard J, Watson AK (1997) Application of the Plackett–Burman experimental design to evaluate nutritional requirements for the production of Colletrichum coccodes spores. Appl Microbiol Biotechnol 47:301–305

    Article  CAS  Google Scholar 

  44. Wang Q, Hou Y, Xu Z, Miao J, Li G (2008) Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp. NJ341 with response surface methodology. Bioresour Technol 99:1926–1930

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology, under the Ministry of Science and Technology, Government of India, for providing a contingency Grant through an Inspire fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Shirkot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guleria, S., Walia, A., Chauhan, A. et al. Mutagenesis of Alkalophilic Cellulosimicrobium sp. CKMX1 for Hyper-Production of Cellulase-Free Xylanase in Solid State Fermentation of Apple Pomace. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 85, 241–252 (2015). https://doi.org/10.1007/s40011-013-0273-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-013-0273-8

Keywords

Navigation