Skip to main content

Advertisement

Log in

Physicochemical Characteristics of Biochar Produced from Rice Straw at Different Pyrolysis Temperature for Soil Amendment and Removal of Organics

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

In this paper, rice straw was pyrolyzed at three temperatures (400, 500 and 600 °C) to study its influence on biochars properties and its chemical composition as soil amendment. Elemental analysis, surface area, pore size distributions, Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) were used in the characterization of resultant biochar. As pyrolysis temperature increased, ash content, yield, acidity, total hydrogen and oxygen contents decreased while total carbon, nitrogen and basicity decreased by the reason of pyrolytic volatilization through pyrolysis. Surface area, total pore, micropore and mesopore volume reach its maximum at pyrolysis temperature of 500 °C in biochar-500. Biochars exhibit wide particle size distribution, from narrow micropores (<0.7 nm) to wide mesopores (>2.0 nm). One sharp peaks was obtained at about 1.0–1.5 nm in the case of micropore region and two broad peaks at about 3.0 and 5.0 nm in mesopore region. FTIR spectra exhibited that high pyrolysis temperatures induce condensation reactions, which leads to aromaticity increasing and decreasing of biochar polarity. With increasing of pyrolysis temperature, cellulose loss and minerals contents increased, as showed by XRD analysis. Results recommend that high pyrolysis temperature give biochar with higher carbon sequestration potential characteristics when applied as soil amendment. Rice-based biochars gave high adsorption capacity for various molecular sizes like phenol, iodine and methylene blue. Biochars acidity/alkalinity and hydrophilicity represents one of the most important property that affecting their solution adsorption behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heo HS, Park HJ, Yim JH, Sohn JM, Park J, Kim SS, Ryu C, Jeon JK, Park YK (2010) Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens. Bioresour Technol 101(10):3672–3677. doi:10.1016/j.biortech.2009.12.078

    Article  Google Scholar 

  2. Lehmann J, Joseph S (2009) Biochar for environmental management: an introduction. In: Lehannes J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  3. Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Sohi S, Cross A, Haszeldine S (2012) Sustainable gasification-biochar systems? A case-study of rice-husk gasification in Cambodia, Part 1: context, chemical properties, environmental and health and safety issues. Energy Policy 42:49–58

    Article  Google Scholar 

  4. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. doi:10.1016/j.chemosphere.2013.10.071

    Article  Google Scholar 

  5. Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102(2):716–723. doi:10.1016/j.biortech.2010.08.067

    Article  Google Scholar 

  6. Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman AR (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131:374–379. doi:10.1016/j.biortech.2012.12.165

    Article  Google Scholar 

  7. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  Google Scholar 

  8. Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28:386–396

    Article  Google Scholar 

  9. Peterson SC, Jackson MA (2014) Simplifying pyrolysis: using gasification to produce corn stover and wheat straw biochar for sorptive and horticultural media. Ind Crops Prod 53:228–235. doi:10.1016/j.indcrop.2013.12.028

    Article  Google Scholar 

  10. Meyer S, Glaser B, Quicker P (2011) Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol 45(22):9473–9483. doi:10.1021/es201792c

    Article  ADS  Google Scholar 

  11. Yakout SM, Daifullah AM, El-Reefy SA (2015) Pore structure characterization of chemically modified biochar derived from rice straw. Environ Eng Manag J 14(2):473–480

    Google Scholar 

  12. Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna MA, Rehrah D, Watts DW, Busscher WJ, Schomberg H (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206

    Google Scholar 

  13. Mora GP, O’Brien WJ (1994) Thermal shock resistance of core reinforced all-ceramic crown systems. J Biomed Mater Res 28(2):189–194. doi:10.1002/jbm.820280208

    Article  Google Scholar 

  14. Kun-yu Z, Hui-ping H, Li-juan Z, Qi-yuan C (2008) Surface charge properties of red mud particles generated from Chinese diaspore bauxite. Nonferrous Met Soc China 18(18):1285–1289

    Google Scholar 

  15. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32:759–769

    Article  Google Scholar 

  16. Calvelo Pereira R, Kaal J, Camps Arbestain M, Pardo Lorenzo R, Aitkenhead W, Hedley M, Macías F, Hindmarsh J, Maciá-Agulló JA (2011) Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org Geochem 42:1331–1342

    Article  Google Scholar 

  17. Wu W, Yang M, Feng Q, McGrouther K, Wang H, Lu H, Chen Y (2012) Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 47:268–276. doi:10.1016/j.biombioe.2012.09.034

    Article  Google Scholar 

  18. Carrier M, Hardie AG, Uras Ü, Görgens J, Knoetze J (2012) Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J Anal Appl Pyrolysis 96:24–32. doi:10.1016/j.jaap.2012.02.016

    Article  Google Scholar 

  19. D4607-94 A (1999) Standard test method for determination of iodine number of activated carbon. ASTM D4607-94, West Conshohocken

    Google Scholar 

  20. Aygun A, Yenisoy-Karakas S, Duman I (2003) Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater 66:189–195

    Article  Google Scholar 

  21. Girgis BS, Yunis SS, Soliman AM (2002) Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Mater Lett 57:164–172

    Article  Google Scholar 

  22. Muradov N, Fidalgo B, Gujar AC, Garceau N, T-Raissi A (2012) Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming. Biomass Bioenergy 42:123–131

    Article  Google Scholar 

  23. Yang HP, Yan R, Chin T, Liang DT, Chen HP, Zheng CG (2004) Thermogravimetric analysis—Fourier transform infrared analysis of palm oil wastes pyrolysis. Energy Fuels 18:1814–1821

    Article  Google Scholar 

  24. Thangalazhy-Gopakumar S, Adhikari S, Ravindran H, Gupta RB, Fasina O, Tu M, Fernando SD (2010) Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresour Technol 101(21):8389–8395. doi:10.1016/j.biortech.2010.05.040

    Article  Google Scholar 

  25. Tsatou P, Metaxas M, Kasselouri-Rigopoulou V (2002) Adsorption of zinc by activated carbons prepared from solvent extracted olive pulp. J Hazard Mater B91:187–203

    Google Scholar 

  26. Cuiping L, Chuangzhi W, Yanyongjie Haitao H (2004) Chemical elemental characteristics of biomass fuels in China. Biomass Bioenergy 27(2):119–130. doi:10.1016/j.biombioe.2004.01.002

    Article  Google Scholar 

  27. Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44(4):1247–1253. doi:10.1021/es9031419

    Article  ADS  Google Scholar 

  28. Downie A, Crosky A, Munro P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 13–22

    Google Scholar 

  29. Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72(2):243–248

    Article  Google Scholar 

  30. Fu P, Yi W, Bai X, Li Z, Hu S, Xiang J (2011) Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues. Bioresour Technol 102(17):8211–8219. doi:10.1016/j.biortech.2011.05.083

    Article  Google Scholar 

  31. Angin D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour Technol 128:593–597. doi:10.1016/j.biortech.2012.10.150

    Article  Google Scholar 

  32. Abdullah H, Wu HW (2009) Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuels 23(8):4174–4181

    Article  Google Scholar 

  33. Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low temperature pyrolysis conditions on biochar for agricultural use. Trans ASABE 51:2061–2069

    Article  Google Scholar 

  34. Chun Y, Sheng G, Chiou CT, Xing B (2004) Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol 38(17):4649–4655

    Article  ADS  Google Scholar 

  35. Shah A, Darr MJ, Dalluge D, Medic D, Webster K, Brown RC (2012) Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs. Bioresour Technol 125:348–352. doi:10.1016/j.biortech.2012.09.061

    Article  Google Scholar 

  36. Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. BioFPR 3:547–562

    Google Scholar 

  37. Inyang M, Gao B, Pullammanappallil P, Ding W, Zimmerman AR (2010) Biochar from anaerobically digested sugarcane bagasse. Bioresour Technol 101(22):8868–8872. doi:10.1016/j.biortech.2010.06.088

    Article  Google Scholar 

  38. Ronsse F, van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. Glob Change Biol Bioenergy 5(2):104–115

    Article  Google Scholar 

  39. Van Zwieten L, Kimber S, Morris S, Chan K, Downie A, Rust J (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  Google Scholar 

  40. Song W, Guo M (2012) Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J Anal Appl Pyrolysis 94:138–145

    Article  Google Scholar 

  41. Bansal RC, Donnet J-B, Stoeckli F (1988) Active carbon. Marcel Dekker Inc., New York and Basel

    Google Scholar 

  42. Yun CH, Park YH, Park CR (2001) Effects of pre-carbonization on porosity development of activated carbons from rice straw. Carbon 39(4):559–567

    Article  Google Scholar 

  43. Cox M, El-Shafey E, Pichugin A, Appleton Q (1999) Preparation and characterization of a carbon adsorbent from flax shive by dehydration with sulfuric acid. J Chem Technol Biotechnol 74:1019–1029

    Article  Google Scholar 

  44. Pradhan B, Sandle N (1998) Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37:1323–1332

    Article  Google Scholar 

  45. Shim JW, Park SJ, Ryu SK (2001) Effect of modification with HNO 3 and NaOH by pitch-based activated carbon fibers. Carbon 39(11):1635–1642

    Article  Google Scholar 

  46. Moreno-Castilla C, Lopez-Ramon M, Carrasco-Marin F, Calemma V (2000) changes in surface chemistry of activated carbons by wet oxidation. Carbon 38(14):1995–2001

    Article  Google Scholar 

  47. Shawabkeh RA (2004) Synthesis and characterization of activated carbo-aluminosilicate material from oil shale. Microporous Mesoporous Mater 75:107–114

    Article  Google Scholar 

  48. Puziy AM, Poddubnaya OI, Martnez-Alonso A, Suarez-Garcia F, Tascon JMD (2003) Synthetic carbons activated with phosphoric acid III. Carbons prepared in air. Carbon 41:1181–1191

    Article  Google Scholar 

  49. Stuart B (1996) Modern infrared spectroscopy. Willy, New York

    Google Scholar 

  50. Adel AM, Kamel S, El-Sakhawy M (2013) Rice straw charcoal: characterization and adsorption of Pb2+ from aqueous solution. Environ Sci 8(8):315–323

    Google Scholar 

  51. Molina-Sabio M, De Lecea CS-M, Rodriguez-Reinoso F, Puente-Ruiz C, Solano AL (1985) A comparison of different tests to evaluate the apparent surface area of activated carbons. Carbon 23(1):91–96

    Article  Google Scholar 

  52. Gergova K, Petrov N, Eser S (1994) Adsorption properties and microstructures of activated carbons produced from agricultural by-products by steam pyrolysis. Carbon 32(4):693

    Article  Google Scholar 

  53. Yenisoy-Karakas S, Aygun A, Gunes M, Tahtasakal E (2004) Physical and chemical characteristics of polymer-based spherical activated carbon and its ability to adsorb organics. Carbon 42:477–484

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding of this research through the Research Group Project No RGP-184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobhy M. Yakout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakout, S.M. Physicochemical Characteristics of Biochar Produced from Rice Straw at Different Pyrolysis Temperature for Soil Amendment and Removal of Organics. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 87, 207–214 (2017). https://doi.org/10.1007/s40010-017-0343-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-017-0343-z

Keywords

Navigation