Skip to main content
Log in

An Approximation Method for Solving Burgers’ Equation Using Legendre Wavelets

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study the solution of the Burgers’ equation, a non-linear Partial Differential equation, using Legendre wavelets based technique. Burgers’ equation is an essential partial differential equation from fluid mechanics and is also used extensively in other areas of engineering such as gas dynamics, traffic flow modeling, acoustic wave propagation, and so on. The method is based on the function approximation so that that the connection coefficients can be identified easily and the series is the approximate solution or in closed form is the exact solution. Illustrative examples have been demonstrated to promote validity and applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bateman H (1915) Some recent researches on the motion of fluids. Mon Weather Rev 43:163–170

    Article  ADS  Google Scholar 

  2. Burgers JM (1939) Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Trans R Neth Acad Sci Amst 17:1–53

    MathSciNet  MATH  Google Scholar 

  3. Burgers JM (1948) A mathematical model illustrating the theory of turbulence. Adv Appl Mech 1:171–199

    Article  MathSciNet  Google Scholar 

  4. Benton ER, Platzman GW (1972) A table of solutions of the one-dimensional Burgers equation. Q Appl Math 30:195–212

    Article  MathSciNet  MATH  Google Scholar 

  5. Cole JD (1951) On a quasilinear parabolic equations occurring in aerodynamics. Q Appl Math 9:225–236

    Article  MATH  Google Scholar 

  6. Ciment M, Leventhal SH, Weinberg BC (1978) The operator compact implicit method for parabolic equations. J Comput Phys 28:135–166

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Hirsh RS (1975) Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique. J Comput Phys 19:90–105

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Mitchell AR, Griffiths DF (1980) The finite difference method in partial differential equations. Wiley, New York

    MATH  Google Scholar 

  9. Christie I, Mitchell AR (1978) Upwinding of high order Galerkin methods in conduction–convection problems. Int J Methods Eng 12:1764–1771

    Article  MATH  Google Scholar 

  10. Herbst BM, Schoombie SW, Griffiths DF, Mitchell AR (1984) Generalized Petrov–Galerkin methods for the numerical solution of Burgers’ equation. Int J Numer Methods Eng 20:1273–1289

    Article  MathSciNet  MATH  Google Scholar 

  11. Arminjon P, Beauchamp C (1978) A finite element method for Burgers’ equation in hydrodynamics. Int J Methods Eng 12:415–428

    Article  MATH  Google Scholar 

  12. Iskandar L, Mohsen A (1992) Some numerical experiments on the splitting of Burgers’ equation. Numer Methods Partial Differ Equ 8:267–276

    Article  MATH  Google Scholar 

  13. Jain PC, Raja M (1979) Splitting-up technique for Burgers’ equations. Indian J Pure Appl Math 10:1543–1551

    MATH  Google Scholar 

  14. De Maerschalck B, Gerritsma MI (2005) The use of Chebyshev polynomials in the space-time least-squares spectral element method. Numer Algorithms 38:173–196

    ADS  MathSciNet  MATH  Google Scholar 

  15. De Maerschalck B, Gerritsma MI (2006) Higher-order Gauss–Lobatto integration for non-linear hyperbolic equations. J Sci Comput 27:201–214

    Article  MathSciNet  MATH  Google Scholar 

  16. De Maerschalck B, Gerritsma MI (2008) Least-squares spectral element method for non-linear differential equations. J Comput Appl Math 215:357–367

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Heinrichs W (2007) An adaptive spectral least-squares scheme for the Burgers equation. Numer Algorithms 44:1–10

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ali AHA, Gardner LRT, Gardner GA (1992) A collocation method for Burgers’ equation using cubic splines. Comput Methods Appl Mech Eng 100:325–337

    Article  ADS  MATH  Google Scholar 

  19. Cadwell J (1987) Application of cubic splines to the nonlinear Burgers’ equation. In: Taylor C, Hinton E, Owen DRJ, Onate E (eds) Numerical methods for nonlinear problems. Pineridge, Swansea

    Google Scholar 

  20. Dag I, Irk D, Saka B (2005) A numerical solution of the Burgers’ equation using cubic B-splines. Appl Math Comput 163:199–211

    Article  MathSciNet  MATH  Google Scholar 

  21. Dag I, Saka B, Boz A (2005) B-spline Galerkin methods for numerical solutions of the Burgers’ equation. Appl Math Comput 166:506–522

    Article  MathSciNet  MATH  Google Scholar 

  22. Hon YC, Mao XZ (1998) An efficient numerical scheme for Burgers’ equation. Appl Math Comput 95:37–50

    Article  MathSciNet  MATH  Google Scholar 

  23. Jain PC, Holla DN (1978) Numerical solutions of coupled Burgers’ equation. Int J Non-linear Mech 13:213–222

    Article  MATH  Google Scholar 

  24. Jain PC, Lohar BL (1979) Cubic spline technique for coupled non-linear parabolic equations. Comput Math Appl 5:179–185

    Article  MathSciNet  MATH  Google Scholar 

  25. Jain PC, Shankar R, Singh TV (1995) Numerical technique for solving convective–reaction–diffusion equation. Math Comput Model 22:113–125

    Article  MathSciNet  MATH  Google Scholar 

  26. Lohar BL, Jain PC (1981) Variable mesh cubic spline technique for N-wave solution of Burgers’ equation. J Comput Phys 39:433–442

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Rubin SG, Khosla PK (1976) Higher-order numerical solutions using cubic splines. AIAA J 14:851–858

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Ozis T, Aksan EN, Özdes A (2003) A finite element approach for solution of Burgers’ equation. Appl Math Comput 139:417–428

    Article  MathSciNet  MATH  Google Scholar 

  29. Razzagi M, Yousefi S (2001) Legendre wavelets method for the solution of nonlinear problems in the calculus of variations. Math Comput Model 34:45–54

    Article  MathSciNet  Google Scholar 

  30. Yousefi S, Razzaghi M (2005) Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations. Math Comput Simul 70:1–8

    Article  MathSciNet  MATH  Google Scholar 

  31. Yousefi SA (2007) Legendre scaling function for solving generalized Emden–Fowler equation. Int J Inf Syst Sci 3:243–250

    MathSciNet  MATH  Google Scholar 

  32. Yousefi SA (2006) Legendre wavelets method for solving differential equations of Lane-emden type. Appl Math Comput 181:1417–1422

    Article  MathSciNet  MATH  Google Scholar 

  33. Venkatesh SG, Ayyaswamy SK, Raja Balachandar S (2012) The Legendre wavelet method for solving initial value problems of Bratu-type. Comput Math Appl 63:1287–1295

    Article  MathSciNet  MATH  Google Scholar 

  34. Venkatesh SG, Ayyaswamy SK, Raja Balachandar S (2012) Convergence analysis of Legendre wavelets method for solving Fredholm integral equations. Appl Math Sci 6:2289–2296

    MathSciNet  MATH  Google Scholar 

  35. Venkatesh SG, Ayyaswamy SK, Raja Balachandar S (2013) Legendre waveletsbased approximation method for solving advection problems. Ain Shams Eng J 4:925–932

    Article  Google Scholar 

  36. Min Xu, Wang Ren-Hong, Zhang Ji-Hong, Fang Qin (2011) A novel numerical scheme for solving Burgers’ equation. Appl Math Comput 217:4473–4482

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu CG, Wang RH (2009) Numerical solution of Burgers’ equation by cubic B-spline quasi-interpolation. Appl Math Comput 208:260–272

    Article  MathSciNet  MATH  Google Scholar 

  38. Hassanien IA, Salama AA, Hosham HA (2005) Fourth-order finite difference method for solving Burgers’ equation. Appl Math Comput 170:781–800

    Article  MathSciNet  MATH  Google Scholar 

  39. Kutluay S, Bahadır AR, Özdes A (1999) Numerical solution of one-dimensional Burgers’ equation: explicit and exact-explicit finite difference method. J Comput Appl Math 103:251–261

    Article  MathSciNet  MATH  Google Scholar 

  40. Dogan A (2004) A Galerkin finite element approach to Burgers’ equation. Appl Math Comput 157:331–346

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Hesameddini E, Shekarpaz S (2012) Wavelet solutions of the Klein–Gordon equation. J Mahani Math Res Cent 1:29–45

    MATH  Google Scholar 

  42. Ismail HNA, Raslam K, AbdRabboh AA (2004) Adomian decomposition method for generalized Burger’s–Huxley and Burger’s–Fisher equation. Appl Math Comput 159:291–301

    Article  MathSciNet  Google Scholar 

  43. Abdou MA, Soliman AA (2005) Variational iteration method for solving Burger’s and coupled Burger’s equations. J Comput Appl Math 181:245–251

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. He JH (2003) Homotopy perturbation method, a new nonlinear analytical technique. Appl Math Comput 135:73–79

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Department of Science and Technology, Government of India for the financial sanction towards this work under FIST Programme SR\FST\MSI-107/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Venkatesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, S.G., Ayyaswamy, S.K. & Raja Balachandar, S. An Approximation Method for Solving Burgers’ Equation Using Legendre Wavelets. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 87, 257–266 (2017). https://doi.org/10.1007/s40010-016-0326-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-016-0326-5

Keywords

Navigation