Skip to main content

Advertisement

Log in

Particle Bound Metals at Major Intersections in an Urban Location and Source Identification Through Use of Metal Markers

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

Air quality monitoring for Kanpur in North India, an industrial city ranked among the top ten most polluted cities worldwide, was conducted in summer 2011. Airborne particulate matter (PM) sample from six locations were analyzed for metals. Source identification conducted using metals as source markers reveals probable sources of airborne particles being vehicular emissions, industrial, and railway activity. Findings were substantiated by investigating morphological characteristics and elemental composition of PM using SEM-EDX analysis at three major sites. In addition to confirmation of results by metal marker method, SEM-EDX analysis revealed presence of sulphur (S) which highlights influence of Panki Thermal Power Plant on air quality. The study shows that high levels of metals observed in airborne particles at major intersections may pose a significant cancer risk by exposure to toxics such as Cr, Pb and Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Buchanan CM, Beverland IJ, Heal MR (2002) The influence of weather-type and long-range transportation on airborne particle concentra-tions in Edinburgh, UK. Atmos Environ 36:5343–5354

    Article  ADS  Google Scholar 

  2. Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ 249:85–101

    Article  Google Scholar 

  3. Schauer J (2003) Evaluation of elemental carbon as a marker for diesel particulate matter. J Expo Anal Environ Epidemiol 13:443–453

    Article  Google Scholar 

  4. Srimuruganandam B, Shiva Nagendra SM (2011) Characteristics of particulate matter and heterogeneous traffic in the urban area of India. Atmos Environ 45(18):3091–3102

    Article  ADS  Google Scholar 

  5. Xiu G, Zhang D, Chen J, Huang X, Chen Z, Guo H, Pan J (2004) Characterization of major water-soluble inorganic ions in size-fractionated particulate matters in Shanghai campus ambient air. Atmos Environ 38:227–236

    Article  ADS  Google Scholar 

  6. McEntee JC, Ogneva-Himmelberger Y (2008) Diesel particulate matter, lung cancer, and asthma incidences along major traffic corridors in MA, USA: a GIS analysis. Health Place 14(4):817–828

    Article  Google Scholar 

  7. Shridhar V, Khillare PS, Agarwal T, Ray S (2010) Metallic species in ambient particulate matter at rural and urban location of Delhi. J Hazard Mater 175:600–607

    Article  Google Scholar 

  8. Dreher KL, Jaskot RH, Lehmann JR, Richards JH, McGee JK, Ghio AJ, Costa DL (1997) Soluble transition metals mediate residual oil fly ash induced acute lung injury. J Toxicol Environ Health 50(3):285–305

    Article  Google Scholar 

  9. Yadav S, Satsangi PG (2013) Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environ Monit Assess 185(9):7365–7379

    Article  Google Scholar 

  10. Du X, Kong Q, Ge W, Zhang S, Fu L (2010) Characterization of personal exposure concentration of fine particles for adults and children exposed to high ambient concentrations in Beijing, China. J Environ Sci 22:1757–1764

    Article  Google Scholar 

  11. Kawanaka YTY, Yun SJ, Sakamoto K (2009) Size distributions of polycyclic aromatic hydrocarbons in the atmosphere and estimation of the contribution of ultrafine particles to their lung deposition. Environ Sci Technol 43(17):6851–6856

    Article  ADS  Google Scholar 

  12. Schwartz J, Neas LM (2000) Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiol 11(1):6–10

    Article  Google Scholar 

  13. Karanasiou AA, Sitaras IE, Siskos PA, Eleftheriadis K (2007) Size distribution and sources of trace metals and n-alkanes in the Athens urban aerosol during summer. Atmos Environ 41(11):2368–2381

    Article  ADS  Google Scholar 

  14. Shen Z, Cao J, Arimoto R, Han Y, Zhu C, Tian J, Liu S (2010) Chemical characteristics of fine particles (PM1) from Xi’an, China. Aerosol Sci Tech 44(6):461–472

    Article  Google Scholar 

  15. Espinosa AJF, Rodriguez MT, BarragándelaRosa FJ, Sánchez JJC (2001) Size distribution of metals in urban aerosols in Seville (Spain). Atmos Environ 35(14):2595–2601

    Article  ADS  Google Scholar 

  16. Pant P, Harrison RM (2012) Critical review of receptor modelling for particulate matter: a case study of India. Atmos Environ 49:1–12

    Article  ADS  Google Scholar 

  17. Sakata M, Kurata M, Tanaka N (2000) Estimating contribution from municipal solid waste incineration to trace metal concentrations in Japanese urban atmosphere using lead as a marker element. Geochem J 34(1):23–32

    Article  Google Scholar 

  18. CSE (2009) Air pollution on the rise in Kanpur, Centre for Science and Environment. http://www.cseindia.org/node/558. Accessed 7 June 2011

  19. CPCB (2010) Air quality assessment, emissions inventory and source apportionment studies for kanpur city,central pollution control board. www.cpcb.nic.in/Kanpur.pdf. Accessed 25 May 2011

  20. Kumar A, Srivastava D, Agrawal M, Goel A (2014) Snapshot of PM loads evaluated at major road and railway intersections in an urban locality. Inte J Environ Pro 4(1):23–29

    Google Scholar 

  21. Chakraborty A, Gupta T (2010) Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region, India. Aerosol Air Qual Res 10(5):433–445

    Google Scholar 

  22. Shandilya KK, Kumar A (2010) Morphology of single inhalable particle inside public transit biodiesel fueled bus. J Environ Sci 22(2):263–270

    Article  Google Scholar 

  23. Hopke PK, Lamb RE, Natusch DFS (1980) Multielemental characterization of urban roadway dust. Environ Sci Technol 14(2):164–172

    Article  ADS  Google Scholar 

  24. Chelani AB, Gajghate DG, Chalapati Rao CV, Devotta S (2010) Particle size distribution in ambient air of Delhi and its statistical analysis. Bull Environ Contam Toxicol 85:22–27

    Article  Google Scholar 

  25. Gietl JK, Lawrence R, Thorpe AJ, Harrison RM (2010) Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmos Environ 44:141–146

    Article  ADS  Google Scholar 

  26. Banerjee AD (2003) Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environ Pollut 123(1):95–105

    Article  Google Scholar 

  27. Basha S, Jhala J, Thorat R, Goel S, Trivedi R, Shah K, Menon G, Gaur P, Mody KH, Jha B (2010) Assessment of heavy metal content in suspended particulate matter of coastal industrial town, Mithapur, Gujarat, India. Atmos Res 97:257–265

    Article  Google Scholar 

  28. Karar K, Gupta AK, Kumar A, Biswas AK (2006) Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and Iron in PM10 particulates at the two sites of Kolkata, India. Environ Monit Assess 120:347–360

    Article  Google Scholar 

  29. Hulskotte JH, van der Gon HA, Visschedijk AJ, Schaap M (2007) Brake wear from vehicles as an important source of diffuse copper pollution. Water Sci Technol 56(1):223–231

    Article  Google Scholar 

  30. Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J, Perez N, Hopke PK (2009) Quantifying road dust resuspension in urban environment by Multilinear Engine: a comparison with PMF2. Atmos Environ 43(17):2770–2780

    Article  ADS  Google Scholar 

  31. Fergusson JE, Kim ND (1991) Trace elements in street and house dusts: sources and speciation. Sci Total Environ 100:125–150

    Article  Google Scholar 

  32. Negi BS, Sadasivan S, Mishra UC (1967) Aerosol composition and sources in urban areas in India. Atmos Environ 21(6):1259–1266

    Article  ADS  Google Scholar 

  33. Fukuzaki N, Yanaka T, Urushiyama Y (1986) Effects of studded tires on roadside airborne dust pollution in Niigata, Japan. Atmos Environ 20(2):377–386

    Article  ADS  Google Scholar 

  34. Kulshrestha UC, Reddy LAK, Satyanarayana J, Kulshrestha MJ (2009) Real-time wet scavenging of major chemical constituents of aerosols and role of rain intensity in Indian region. Atmos Environ 43(32):5123–5127

    Article  ADS  Google Scholar 

  35. Shevchenko V, Lisitzin A, Vinogradova A, Stein R (2003) Heavy metals in aerosols over the seas of the Russian Arctic. Sci Total Environ 306:11–25

    Article  Google Scholar 

  36. Khare P, Baruah BP (2010) Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of North-East India. Atmos Res 98(1):148–162

    Article  Google Scholar 

  37. Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29(1):1–46

    Article  Google Scholar 

  38. Pacyna JM, Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev 9(4):269–298

    Article  Google Scholar 

  39. Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health 4(4):341–394

    Article  Google Scholar 

  40. Gehrig RH, Lienemann M, Zwicky P, Bukowiecki CN, Weingartner N, Baltensperger E, Buchmann UB (2007) Contribution of railway traffic to local PM10 concentrations in Switzerland. Atmos Environ 41(5):923–933

    Article  ADS  Google Scholar 

  41. Garg BD, Cadle SH, Mulawa PA, Groblicki PJ, Laroo C, Parr GA (2000) Brake wear particulate matter emissions. Environ Sci Technol 34(21):4463–4469

    Article  ADS  Google Scholar 

  42. Wang YF, Huang KL, Li CT, Mi HH, Luo JH, Tsai PJ (2003) Emissions of fuel metals content from a diesel vehicle engine. Atmos Environ 37(33):4637–4643

    Article  ADS  Google Scholar 

  43. Bukowiecki N, Gehrig R, Hill M, Lienemann P, Zwicky CN, Buchmann B, Weingartner E, Baltensperger U (2007) Iron, manganese and copper emitted by cargo and passenger trains in Zürich (Switzerland): size-segregated mass concentrations in ambient air. Atmos Environ 41(4):878–889

    Article  ADS  Google Scholar 

  44. Múgica-Alvarez J, Figueroa-Lara M, Romero-Romo J, Sepúlveda-Sánchez T, López-Moreno (2012) Concentrations and properties of airborne particles in the Mexico City subway system. Atmos Environ 49:284–293

    Article  ADS  Google Scholar 

  45. Ding T, Chen GX, Zhu MH, Zhang WH, Zhou ZR (2009) Influence of the spring stiffness on friction and wear behaviours of stainless steel/copper-impregnated metallized carbon couple with electrical current. Wear 267:1080–1086

    Article  Google Scholar 

  46. Dong L, Chen GX, Zhu MH, Zhou ZR (2007) Wear mechanism of aluminum-stainless steel composite conductor rail sliding against collector shoe with electric current. Wear 263:598–603

    Article  Google Scholar 

  47. Hu T, Cao JJ, Shen Z, Wang G, Lee S, Ho K (2012) Size differentiation of individual atmospheric aerosol during winter in Xian, China. Aerosol Air Qual Res 12:951–960

    Google Scholar 

  48. Parmar RS, Satsangi GS, Kumari M, Lakhani A, Srivastava SS, Prakash S (2001) Study of size distribution of atmospheric aerosol at Agra. Atmos Environ 35(4):693–702

    Article  ADS  Google Scholar 

  49. Kothai P, Saradhi IV, Prathibha P, Pandit GG, Puranik VD (2008) Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aerosol Air Qual Res 8:423–436

    Google Scholar 

  50. Ooki A, Uematsu M, Miura K, Nakae S (2002) Sources of sodium in atmospheric fine particles. Atmos Environ 36(27):4367–4374

    Article  ADS  Google Scholar 

  51. IARC (2004a) IARC Monographs on the evaluation of carcinogenic risk to humans: inorganic and organic lead compounds. http://monographs.iarc.fr/ENG/Meetings/vol87/mono87.pdf. Accessed 18 July 2012

  52. IARC (2004b) Some drinking-water disinfectants and contaminants, in-cluding Arsenic. http://monographs.iarc.fr/ENG/Monographs/vol84/mono84.pdf. Accessed 18 July 2012

  53. Khillare PK, Balachandran S, Meena BR (2004) Spatial and temporal variation of heavy metals in atmospheric aerosol in India. Environ Monit Assess 90:1–21

    Article  Google Scholar 

  54. Damini D, Sukriti P, Subathra Devi C, Selvarajan E, Suganthi V, Mohanasrinivasan V (2013) Removal of heavy metals from leather industry effluent using saccharomyces sp in a packed bed reactor. Res J Eng Technol 4(2):53–56

    Google Scholar 

  55. Nawaz H, Solangi B, Zehra B, Nadeem U (2011) Preparation of nano zinc oxide and its application in leather as a retanning and antibacterial agent. Can J Sci Ind Res 2(4):164–170

    Google Scholar 

  56. Bukhari M, Awan MA, Qazi IA, Baig MA (2012) Development of a method for the determination of chromium and cadmium in tannery wastewater using laser-induced breakdown spectroscopy. J Anal Methods Chem. doi:10.1155/2012/823016

    Google Scholar 

  57. Sternbeck J, Sjödin Å, Andréasson K (2002) Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmos Environ 36(30):4735–4744

    Article  ADS  Google Scholar 

  58. Wilkinson K, Lundkvist J, Seisenbaeva G, Kessler V (2011) New tabletop SEM-EDS-based approach for cost-efficient monitoring of airborne particulate matter. Environ Pollut 159(1):311–318

    Article  Google Scholar 

  59. Srivastava A, Jain VK (2009) SEM-EDX analysis of various sizes aerosols in Delhi India. Environ Monit Assess 150:405–416

    Article  Google Scholar 

  60. Breed CA, Arocena JM, Sutherland D (2002) Possible sources of PM10 in Prince George (Canada) as revealed by morphology and in situ chemical composition of particulate. Atmos Environ 36(10):1721–1731

    Article  ADS  Google Scholar 

  61. Slezakova K, Castro D, Begonha A, Delerue-Matos C, Alvim-Ferraz MC, Morais S, Pereira MC (2011) Air pollution from traffic emissions in Oporto, Portugal: health and environmental implications. Microchem J 99:51–59

    Article  Google Scholar 

  62. Pachauri T, Singla V, Satsangi A, Lakhani A, Kumari KM (2013) Characterization of carbonaceous aerosols with special reference to episodic events at Agra, India. Atmos Res 128:98–110

    Article  Google Scholar 

Download references

Acknowledgments

Sample collection for this work was carried out as part of SURGE (Summer Undergraduate Research Grant for Excellence) program at IIT Kanpur. Authors are thankful to the staff of district industrial office of Kanpur and Unnao city for providing information about industries registered in the region and also appreciate the help of Ashwin Kumar during sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anubha Goel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, D., Goel, A. & Agrawal, M. Particle Bound Metals at Major Intersections in an Urban Location and Source Identification Through Use of Metal Markers. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 86, 209–220 (2016). https://doi.org/10.1007/s40010-016-0268-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-016-0268-y

Keywords

Navigation