Skip to main content
Log in

Bound States of the Dirac Equation for Modified Mobius Square Potential Within the Yukawa-Like Tensor Interaction

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

In this paper Dirac equation was studied in the presence of the modified Mobius square potential with a Yukawa-like tensor interaction. The eigenvalues and corresponding eigenfunctions were obtained for any-state by using Nikiforov–Uvarov method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ginocchio JN (2004) Relativistic harmonic oscillator with spin symmetry. Phys Rev C 69:034318

    Article  ADS  Google Scholar 

  2. Ginocchio JN (1997) Pseudospin as a relativistic symmetry. Phys Rev Lett 78:436

    Article  ADS  Google Scholar 

  3. Ginocchio JN (2005) Relativistic symmetries in nuclei and hadrons. Phys Rep 414:165–261

    Article  ADS  MathSciNet  Google Scholar 

  4. Troltenier D, Bahri C, Drayer JP (1995) Generalized pseudo-SU(3) model and pairing. Nucl Phys A 586:53–72

    Article  ADS  Google Scholar 

  5. Page PR, Goldman T, Ginocchio JN (2001) Relativistic symmetry suppresses Quark spin-orbit splitting. Phys Rev Lett 86:204

    Article  ADS  Google Scholar 

  6. Ginocchio JN (2005) U(3) and pseudo-U(3) symmetry of the oscillator relativistic harmonic. Phys Rev Lett 95:252501

    Article  ADS  Google Scholar 

  7. Taskin F, Kocak G (2011) Spin symmetric solutions of Dirac equation with Pöschl-Teller potential. Chin. Phys. B 20:070302

    Article  Google Scholar 

  8. Hamzavi M, Rajabi AA, Hassanabadi H (2012) Relativistic Morse Potential and Tensor Interaction. Few-Body Syst 52:19–29

    Article  ADS  Google Scholar 

  9. Ginocchio JN, Leviatan A, Meng J, Zhou SG (2004) Test of pseudospin symmetry in deformed nuclei. Phys Rev C 69:034303

    Article  ADS  Google Scholar 

  10. Ginocchio JN, Leviatan A (1998) On the relativistic foundations of pseudospin symmetry in nuclei. Phys Lett B 425:1–5

    Article  ADS  MATH  Google Scholar 

  11. Hassanabadi H, Maghsoodi E, Zarrinkamar S (2012) Relativistic symmetries of Dirac equation and the Tietz potential. Euro. Phys. J. Plus 127:31

    Article  MATH  Google Scholar 

  12. Hamzavi H, Rajabi AA, Hassanabadi H (2010) Exact pseudospin symmetry solution of the Dirac equation for spatially-dependent mass Coulomb potential including a Coulomb-like tensor interaction via asymptotic iteration method. Phys Lett A 374:4303–4307

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Setare MR, Nazari Z (2009) Solution of Dirac equations with ve-parameter exponent-type potential. Acta Phys Pol B 40:2809–2824

    ADS  MathSciNet  Google Scholar 

  14. Ikhdair SM, Sever R (2010) Approximate bound state solutions of Dirac equationwith Hulthén potential including Coulomb-like tensor potential. Appl Math Comput 216:911–923

    MathSciNet  MATH  Google Scholar 

  15. Hassanabadi H, Maghsoodi E, Zarrinkamar S, Rahimov H (2012) Dirac equation for generalized Pöschl-Teller scalar and vector potentials and a Coulomb tensor interaction by Nikiforov-Uvarov method. J Math Phys 53:022104

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hassanabadi H, Zarrinkamar S, Hamzavi M (2012) Few-Body Syst 37:209

    MathSciNet  Google Scholar 

  17. Hassanabadi H, Zarrinkamar S, Rajabi AA (2011) Exact solutions of D-dimensional schrödinger equation for an energy-dependent potential by NU method. Commun Theor Phys 55:541

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Yazarloo BH, Hassanabadi H, Zarrinkamar S (2012) Oscillator strengths based on the Möbius square potential under Schrödinger equation. Eur Phys J Plus 127:51

    Article  Google Scholar 

  19. Hassanabadi H, Maghsoodi E, Zarrinkamar S, Rahimov H (2011) An approximate solution of the Dirac equation for Hyperbolic scalar and vector potentials and a Coulomb tensor interaction by SUSYQM. Mod Phys Lett A 26(36):2703–2718

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Ikot AN (2012) Solutions of Dirac equation for generalized hyperbolical potential including Coulomb-like tensor potential with spin symmetry. Few-Body Syst 53:549–555

    Article  ADS  Google Scholar 

  21. Boonserm P, Visser M (2011) Quasi-normal frequencies: key analytic results. JHEP 1103:073

    Article  ADS  MATH  Google Scholar 

  22. Nikiforov AF, Uvarov VB (1988) Special functions of mathematical physics. Birkhauser, Basel

    Book  MATH  Google Scholar 

  23. Tezcan C, Sever R (2009) A general approach for the exact solution of the Schrödinger equation. Int J Theor Phys 48:337–350

    Article  MathSciNet  MATH  Google Scholar 

  24. Maghsoodi E, Hassanabadi H, Aydogdu O (2012) Dirac particles in the presence of the Yukawa potential plus a tensor interaction in SUSYQM framework. Phys Scr 86:015005

    Article  ADS  MATH  Google Scholar 

  25. Alberto P, Lisboa R, Malheiro M, de Catro AS (2005) Tensor coupling and pseudospin symmetry in nuclei. Phys Rev C 71:034313

    Article  ADS  Google Scholar 

  26. Lisboa R, Malheiro M, de Castro AS, Alberto P, Fiolhais M (2004) Pseudospin symmetry and the relativistic harmonic oscillator. Phys Rev C 69:024319

    Article  ADS  MATH  Google Scholar 

  27. Meng J, Sugawara-Tanabe K, Yamaji S, Ring P, Arima A (1998) Pseudospin symmetry in relativistic mean field theory. Phys Rev C 58:R628(R)

    Article  ADS  Google Scholar 

  28. Aydogdu O, Sever R (2011) The Dirac-Yukawa problem in view of pseudospin symmetry. Phys Scr 84:025005

    Article  ADS  MATH  Google Scholar 

  29. Pekeris CL (1934) The rotation-vibration coupling in diatomic molecules. Phys Rev 45:98

    Article  ADS  MATH  Google Scholar 

  30. Maghsoodi E, Hassanabadi H, Zarrinkamar S (2012) Spectrum of Dirac equation under Deng-Fan Scalar and Vector potentials and a Coulomb tensor interaction by SUSYQM. Few-Body Syst 53:525–538

    Article  ADS  MathSciNet  Google Scholar 

  31. Ikot AN, Maghsoodi E, Zarrinkamar S, Naderi L, Hassanabadi H (2014) Bound state solutions of the Dirac equation for the Eckart potential with Coulomb-like Yukawa-like tensor interactions. Few-Body Syst 55:241–253

    Article  ADS  Google Scholar 

  32. Ikhdair SM (2011) An approximate κ state solutions of the Dirac equation for the generalized Morse potential under spin and pseudospin symmetry. J Math Phys 52:052303

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akpan Ikot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikot, A., Maghsoodi, E., Ibanga, E. et al. Bound States of the Dirac Equation for Modified Mobius Square Potential Within the Yukawa-Like Tensor Interaction. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 86, 433–440 (2016). https://doi.org/10.1007/s40010-015-0227-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-015-0227-z

Keywords

Navigation