Skip to main content
Log in

Effects of Rotation and Heat Source on MHD Free Convective Flow on Vertically Upwards Heated Plate with Gravity Modulation in Slip Flow Region

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

In the present paper we study free convective unsteady flow of a viscous incompressible and rotating fluid in a porous medium past an infinite vertical plate with constant heat source and gravity modulation to the flow region. Expressions for velocity, temperature and concentration distribution are obtained by using perturbation technique. Also the expressions for the skin-friction coefficient, rate of heat transfer and Sherwood number are derived. The effects of Prandtl Number (\( P_{r} \)), Grashof number (\( G_{r} \)), modified Grashof number (\( G_{c} \)), frequency of oscillation, rotation parameter (E), heat source parameter (\( S^{*} \)), gravity modulation parameter (α) and permeability parameter (K0) are analyzed and studied through graphs. It is found that primary velocity of fluid decreases with increase of rotation parameter whereas secondary velocity is increased near to the wall, and rate of heat transfer decreases with increase of heat source parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gebhart B (1962) Effect of viscous dissipation in natural convection. J Fluid Mech 14:225–232

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Gebhart B, Mollendorf J (1969) Viscous dissipation in external natural convection flows. J Fluid Mech 38:97–107

    Article  MATH  ADS  Google Scholar 

  3. Soundalgekar VM (1974) Free convection effects on steady MHD flow past a vertical porous plate. J Fluid Mech 66(3):541–551

    Article  MATH  ADS  Google Scholar 

  4. Soundalgekar VM (1974) Free convection effects on the oscillatory flow past an infinite vertical porous plate with constant suction. Proc R Soc Lond A 333:25–36

    Article  ADS  Google Scholar 

  5. Mehmood A, Ali A (2007) The effect of slip condition on unsteady MHD oscillatory flow of viscous fluid in planar channel. Rom J Phys 52:85–91

    Google Scholar 

  6. Mahmoud MAA (2009) Thermal radiation effect on unsteady MHD free convection flow past a vertical plate with temperature dependent viscosity. Can J Chem Eng 87:47–52

    Article  Google Scholar 

  7. Kannan SK, Todd BD, Hansen JS, Davis PJ (2011) Slip flow in graphene nanochannels. J Chem Phys 135:144701 (1–9)

    Article  ADS  Google Scholar 

  8. Senapati N, Dhal RK, Das TK (2012) Effects of chemical reaction on free convection MHD flow through porous medium bounded by vertical surface with slip flow region. Am J Comput Appl Math 2:124–135

    Article  Google Scholar 

  9. Mekheimer KhS, Salem AM, Zaher AZ (2013) Peristaltic induced flow due to a surface acoustic wavy moving wall. Chin J Phys 51(5):968–982

    Google Scholar 

  10. Lightill MJ (1954) The response of laminar skin friction and heat transfer fluctuations in the stream velocity. Proc R Soc Lond A 224:1–23

    Article  ADS  Google Scholar 

  11. Abdelkhalek MM (2009) Heat and mass transfer in MHD free convection from a moving permeable vertical surface by a perturbation technique. Commun Nonlinear Sci 14:2091–2102

    Article  Google Scholar 

  12. Reddy TS, Reddy OS, Varma VK, Raju MC (2012) Heat transfer in hydromagnetic rotating flow of viscous fluid through a non-homogeneous porous medium with constant heat source/sink. IJMA 3:3159–3168

    Google Scholar 

  13. Hossain MS, Samand MA (2013) Heat and mass transfer of MHD free convection flow along a stretching sheet with chemical reaction, radiation and heat generation in presence of magnetic field. Res J Math Stat 5:1–2

    Google Scholar 

  14. Manglesh A, Gorla MG (2012) The effects of radiation, chemical reaction and rotation on unsteady MHD viscoelastic slip flow. Glob J Sci Front Res Math Decis Sci 12:1–15

    Google Scholar 

  15. Kuiken HK (1970) Magnetohydrodynamics free convection in a strong cross field. J Fluid Mech 40:21–38

    Article  MATH  ADS  Google Scholar 

  16. Debnath L (1972) On unsteady magnetohydrodynamic boundary layers in a rotating flow. ZAMM 52:623–626

    Article  MATH  Google Scholar 

  17. Bestman AR, Adjepong SK (1988) Unsteady hydrodynamics free- convection flow with radiative heat transfer in a rotating fluid. I-incompressible optically thin fluid. Ap&SS 143:73–80

    Article  ADS  Google Scholar 

  18. Asghar S, Hanif K, Hayat T (2007) The effect of the slip conditions on unsteady flow due to non-coaxial rotations disk and a fluid at infinity. Meccanica 42:141–148

    Article  MATH  Google Scholar 

  19. Seth GS, Nandkeolyar R, Ansari MS (2011) Effect of rotation on unsteady hydromagnetic natural convection flow past an impulsively moving vertical plate with ramped temperature in a porous medium with thermal diffusion and heat absorption. IJAMM 7:52–69

    Google Scholar 

  20. Muthucumarswamy R, Dhanasekar N, Prasad GE (2012) Chemical reaction effects on flow past an accelerated vertical plate with variable temperature in the presence of rotating fluid. Int J Math Eng 188:1799–1809

    Google Scholar 

  21. Sarkar BC, Das S, Jana RN (2013) MHD free and forced convective flow in a rotating channel. Int J Comput Appl 74(18):9–17

    Google Scholar 

  22. Seth GS, Nandkeolyar R, Ansari MS (2013) Effects of thermal radiation and rotation on unsteady hydromagnetic free convection flow past on impulsively moving vertical plate with ramped temperature in porous medium. J Appl Fluid Mech 6:27–38

    Google Scholar 

  23. Norsarahaida A (1988) The effect of g-Jitter on heat transfer. Proc R Soc Lond A 419:151–172

  24. Shu Y, Li QB, de Groh HC (2001) Numerical study of g-jitter induced double diffusive convection. Numer Heat Transf Part A 39:245–265

    Article  ADS  Google Scholar 

  25. Govender S (2005) Linear stability and convection in gravity modulated porous layer heated from below: transition from synchronous to subharmonic solutions. Transp Porous Media 59:227–238

    Article  Google Scholar 

  26. Yan Y, Shevtsova V, Saghir MZ (2005) Numerical study of low frequency g-jitter effect on thermal diffusion. FDMP 1(4):315–328

    Google Scholar 

  27. Bhadauria BS, Siddheshwar PG, Kumar Jogendra, Suthar Om P (2012) Weakly nonlinear stability analysis of temperature/gravity-modulated stationary Rayleigh-Bénard convection in a rotating porous medium. Transp Porous Media 92:633–647

    Article  MathSciNet  Google Scholar 

  28. Jain SR, Rajvanshi SC (2011) Influence of gravity modulation, viscous heating and concentration on flow past a vertical plate in slip flow regime with periodic temperature variations. Int J Theor Appl Sci 3(1):16–22

    Google Scholar 

  29. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  30. Chorlton F (1967) Text book of dynamics. D. Van Nostrand Company Ltd, London

  31. Bansal JL (1977) Viscous fluid dynamics. Oxford and IBH Publishing Co.Pvt Ltd, New Delhi

  32. Schilichting H, Gersten K (2000) Boundary layer theory, 8th revised and enlarged edition. Springer-Verlag, New York

  33. Kundu Pijush K, Cohen Ira M (2003) Fluid mechanics, 2nd edn. Elsevier Exclusive, California

Download references

Acknowledgments

AS acknowledges the financial assistance from UGC - SAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha Singh.

Appendix

Appendix

$$ A_{1} = \frac{{R_{1} S_{c} }}{{R_{1}^{2} - S_{c} R_{1} - S_{c} \left( {K_{c} + \frac{i\omega }{4}} \right)}} $$
$$ A_{2} = \frac{{R_{5} P_{r} }}{{R_{5}^{2} - P_{r} R_{5} + P_{r} \left( {S_{H} - \frac{i\omega }{4}} \right)}} $$
$$ A_{3} = \frac{{ - G_{r} }}{{R_{5}^{2} - R_{5} - \left( {L + \frac{1}{{k_{0} }}} \right)}} $$
$$ A_{4} = \frac{{ - G_{c} }}{{R_{1}^{2} - R_{1} - \left( {L + \frac{1}{{k_{0} }}} \right)}} $$
$$ A_{5} = \frac{{R_{9} C_{9} }}{{R_{9}^{2} - R_{9} - \left( {L + \frac{1}{{k_{0} }} + \frac{i\omega }{4}} \right)}} $$
$$ A_{6} = \frac{{ - \left( {1 - A_{2} } \right)G_{r} }}{{R_{7}^{2} - R_{7} - \left( {L + \frac{1}{{k_{0} }} + \frac{i\omega }{4}} \right)}} $$
$$ A_{7} = \frac{{R_{5} A_{3} - A_{2} G_{r} - \alpha G_{r} }}{{R_{5}^{2} - R_{5} - \left( {L + \frac{1}{{k_{0} }} + \frac{i\omega }{4}} \right)}} $$
$$ A_{8} = \frac{{ - \left( {1 - A_{1} } \right)G_{c} }}{{R_{3}^{2} - R_{3} - \left( {L + \frac{1}{{k_{0} }} + \frac{i\omega }{4}} \right)}} $$
$$ A_{9} = \frac{{R_{1} A_{4} - A_{1} G_{c} - \alpha G_{c} }}{{R_{1}^{2} - R_{1} - \left( {L + \frac{1}{{k_{0} }} + \frac{i\omega }{4}} \right)}} $$
$$ R_{1} = \frac{{S_{c} + \sqrt {S_{c}^{2} + 4K_{c} S_{c} } }}{2} $$
$$ R_{3} = \frac{{S_{c} + \sqrt {S_{c}^{2} + 4\left( {K_{c} + \frac{i\omega }{4}} \right)S_{c} } }}{2} $$
$$ R_{5} = \frac{{P_{r} + \sqrt {P_{r}^{2} - 4S_{H} P_{r} } }}{2} $$
$$ R_{7} = \frac{{P_{r} + \sqrt {P_{r}^{2} + 4\left( {S_{H} - \frac{i\omega }{4}} \right)P_{r} } }}{2} $$
$$ R_{9} = \frac{{1 + \sqrt {1 + 4\left( {L + \frac{1}{{k_{0} }}} \right)} }}{2} $$
$$ R_{11} = \frac{{1 + \sqrt {1 + 4\left( {L + \frac{1}{{k_{0} }} + \frac{i\omega }{4}} \right)} }}{2} $$
$$ K_{12} = \frac{{R_{3} S_{c} }}{{R_{3}^{2} - S_{c} R_{3} - \left( {K_{c} + \frac{i\omega }{4}} \right)S_{c} }} $$
$$ C_{9} = \frac{{ - \left( {1 + R_{5} \varphi_{1} } \right)A_{3} - \left( {1 + R_{1} \varphi_{1} } \right)A_{4} }}{{1 + R_{9} \varphi_{1} }} $$
$$ C_{11} = \frac{{ - \left( {1 + R_{9} \varphi_{1} } \right)A_{5} - \left( {1 + R_{7} \varphi_{1} } \right)A_{6} - \left( {1 + R_{5} \varphi_{1} } \right)A_{7} - \left( {1 + R_{3} \varphi_{1} } \right)A_{8} - \left( {1 + R_{1} \varphi_{1} } \right)A_{9} }}{{1 + R_{11} \varphi_{1} }} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorla, M.G., Chand, K. & Singh, A. Effects of Rotation and Heat Source on MHD Free Convective Flow on Vertically Upwards Heated Plate with Gravity Modulation in Slip Flow Region. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 85, 427–437 (2015). https://doi.org/10.1007/s40010-015-0218-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-015-0218-0

Keywords

Navigation