Skip to main content
Log in

A Study on the Interacting Ricci Dark Energy in f(RT) Gravity

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

The present work reports study on the interacting Ricci dark energy in a modified gravity theory named f(RT) gravity. In the specific model f(RT) = μ R + ν T we have observed a quintom-like behavior of the equation of state parameter and a transition from matter dominated to dark energy density has been observed through fraction density evolution. The statefinder parameters reveal that the model interpolates between dust and \(\Uplambda\hbox{CDM}\) phases of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Copeland EJ, Sami M, Tsujikawa S (2006) Dynamics of dark energy. Int J Mod Phys D 15:1753–1936. doi:10.1142/S021827180600942X

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Padmanabhan T (2005) Dark energy: the cosmological challenge of the millennium. Curr Sci 88:1057–1067

    ADS  Google Scholar 

  3. Bamba K, Capozziello S, Nojiri S, Odintsov SD (2012) Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys Space Sci 342:155–228. doi:10.1007/s10509-012-1181-8

    Article  ADS  Google Scholar 

  4. Spergel DN, Verde L, Peirs HV, Komatsu E, Nolta MR, Bennett CL, Halpern M, Hinshaw G, Jarosk N, Kogut A, Limon M, Meyer SS, Page L, Tucker GS, Weiland JL, Wollack E, Wright EL (2003) First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys J Suppl 148:175–194 doi:10.1086/377226

    Google Scholar 

  5. Perlmutter S, Aldering G, Goldhaber G, Knop RA, Nugent P, Castro PG, Deustua S, Fabbro S, Goobar A, Groom DE, Hook IM, Kim AG, Kim MY, Lee JC, Nunes NJ, Pain R, Pennypacker CR, Quimby R, Lidman C, Ellis RS, Irwin M, McMahon RG, Ruiz-Lapuente P, Walton N, Schaefer B, Boyle BJ, Filippenko AV, Matheson T, Fruchter AS, Panagia N, Newberg HJM, Couch WJ (1999) Measurements of \(\Upomega\) and \(\Uplambda\) from 42 high-redshift supernovae. Astrophys J 517:565–586. doi:10.1086/307221

  6. Tsujikawa S (2011) Dark energy: investigation and modeling. Lect Notes Phys 800:331–402

    Google Scholar 

  7. Nojiri S, Odintsov SD (2007) Introduction to modified gravity and gravitational alternative for dark energy. Int J Geom Methods Mod Phys 4:115–156. doi:10.1142/S0219887807001928

    Article  MATH  MathSciNet  Google Scholar 

  8. Clifton T, Ferreira PG, Padilla A, Skordis C (2012) Modified gravity and cosmology. Phys Rep 513:1–189. doi:10.1016/j.physrep.2012.01.001

    Article  MathSciNet  ADS  Google Scholar 

  9. Nojiri S, Odintsov SD (2006) Modified f(R) gravity consistent with realistic cosmology: from a matter dominated epoch to a dark energy universe. Phys Rev D 74: Article no. 086005. doi:10.1103/PhysRevD.74.086005

  10. Nojiri S, Odintsov SD (2008) Modified f(R) gravity unifying R m inflation with the \(\Uplambda\hbox{CDM}\) epoch. Phys Rev D 77: Article no. 026007. doi:10.1103/PhysRevD.77.026007

  11. Cai YF, Chen SH, Dent JB, Dutta S, Saridakis EN (2011) Matter bounce cosmology with the f(T) gravity. Class Quantum Grav 28: Article no. 215011. doi:10.1088/0264-9381/28/21/215011

  12. Ferraro R, Fiorini F (2007) Modified teleparallel gravity: inflation without an inflaton. Phys Rev D 75 Article no. 084031. doi:10.1103/PhysRevD.75.084031

  13. Bamba K, Geng CQ, Lee CC, Luo LW (2011) Equation of state for dark energy in f(T) gravity. JCAP 01: Article no. 021. doi:10.1088/1475-7516/2011/01/021

  14. Bamba K, Geng CQ, Lee CC (2010) Comment on Einstein’s other gravity and the acceleration of the universe. http://arxiv.org/abs/1008.4036. Accessed 18 April 2013

  15. Myrzakulov R, Saez-Gomez D, Tureanu A (2011) On the \(\Uplambda\hbox{CDM}\) universe in f(G) gravity. Gen Rel Grav 43:1671–1684. doi:10.1007/s10714-011-1149-y

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Banijamali A, Fazlpour B, Setare MR (2012) Energy conditions in f(G) modified gravity with non-minimal coupling to matter. Astrophys Space Sci 338–327. doi:10.1007/s10509-011-0934-0

  17. Kiritsis E, Kofinas G (2009) Horava–Lifshitz cosmology. Nucl Phys B 821:467–480. doi:10.1016/j.nuclphysb.2009.05.005

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Kluson J (2009) Horava–Lifshitz f(R) gravity. JHEP 11: Article no. 078. doi:10.1088/1126-6708/2009/11/078

  19. Nojiri S, Odintsov SD (2005) Modified Gauss-Bonnet theory as gravitational alternative for dark energy. Phys Lett B 631:1–6. doi:10.1016/j.physletb.2005.10.010

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Li B, Barrow JD, Mota DF (2007) Cosmology of modified Gauss-Bonnet gravity. Phys Rev D 76: Article no. 044027. doi:10.1103/PhysRevD.76.044027

  21. Sotiriou TP, Faraoni V (2010) f(R) theories of gravity. Rev Mod Phys 82: Article no.451. doi:10.1103/RevModPhys.82.451

  22. De Felice A, Tsujikawa S (2010) f(R) Theories living. Rev Rel 13: Article no. 3. http://www.livingreviews.org/lrr-2010-3. Accessed 18 April 2013

  23. Sotiriou TP (2006) f(R) gravity and scalar–tensor theory. Class Quant Grav 23: Article no. 5117. doi:10.1088/0264-9381/23/17/003

  24. Capozziello S, De Laurentis M (2011) Extended theories of gravity. Phys Rep 509:167–321. doi:10.1016/j.physrep.2011.09.003

    Article  MathSciNet  ADS  Google Scholar 

  25. K Bamba, Geng C-Q (2009) Thermodynamics in f(R) gravity with phantom crossing. Phys Lett B 679:282–287. doi:10.1016/j.physletb.2009.07.039

    Google Scholar 

  26. Akbar M, Cai RG (2007) Thermodynamic behavior of field equations for f(R) gravity. Phys Lett B 648:243–248. doi:10.1016/j.physletb.2007.03.005

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Harko T, Lobo FSN, Nojiri S, Odintsov, SD (2011) f(RT) gravity. Phys Rev D 84: Article no. 024020. doi:10.1103/PhysRevD.84.024020

  28. Poplawski NJ (2006) A Lagrangian description of interacting dark energy. http://arxiv.org/abs/gr-qc/0608031v2. Accessed 18 April 2013

  29. Tamanini N (2012) Variational approach to gravitational theories with two independent connections. Phys Rev D 86: Article no. 024004. doi:10.1103/PhysRevD.86.024004

  30. Myrzakulov R (2012) Dark energy in F(RT) Gravity. http://arxiv.org/abs/1205.5266v2. Accessed on 18 April 2013

  31. Gao C, Wu F, Chen X, Shen YG (2009) Holographic dark energy model from Ricci scalar curvature. Phys Rev D 79: Article no. 043511. doi:10.1103/PhysRevD.79.043511

  32. Kim KY, Lee HW, Myung, YS (2011) On the Ricci dark energy model. Gen Rel Grav 43: 1095–1101. doi:10.1007/s10714-010-0941-4

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Feng CJ (2008) Statefinder diagnosis for Ricci dark energy. Phys Lett B 670:231–234. doi:10.1016/j.physletb.2008.11.005

    Article  ADS  Google Scholar 

  34. Fu TF, Zhang JF, Chen JQ, Zhang X (2012) Holographic Ricci dark energy: interacting model and cosmological constraints. Eur Phys J C 72: Article no. 1932. doi:10.1140/epjc/s10052-012-1932-2

  35. Xu L, Wang Y (2010) Observational constraints to Ricci dark energy model by using: SN, BAO, OHD, fgas data sets. J Cosmol Astropart Phys 06: Article no. 002. doi:10.1088/1475-7516/2010/06/002

  36. Feng CJ (2009) Reconstructing f(R) theory from Ricci dark energy. Phys Lett B 676:168–172. doi:10.1016/j.physletb.2009.04.089

    Article  ADS  Google Scholar 

  37. Jamil M, Saridakis EN, Setare MR (2010) Thermodynamics of dark energy interacting with dark matter and radiation. Phys Rev D 81: Article no. 023007. doi:10.1103/PhysRevD.81.023007

  38. Wu Q, Gong Y, Wang A, Alcaniz JS (2008) Current constraints on interacting holographic dark energy. Phys Lett B 659:34–39. doi:10.1016/j.physletb.2007.10.061

    Article  ADS  Google Scholar 

  39. Kim H, Lee HW, Myung YS (2006) Equation of state for an interacting holographic dark energy model. Phys Lett B 632:605–609. doi:10.1016/j.physletb.2005.11.043

    Article  Google Scholar 

  40. Setare MR (2007) Interacting holographic dark energy model and generalized second law of thermodynamics in a non-flat universe. J Cosmol Astropart Phys 01: Article no. 023. doi:10.1088/1475-7516/2007/01/023

  41. Wang B, Gong YG, Abdalla, E (2005) Transition of the dark energy equation of state in an interacting holographic dark energy model. Phys Lett B 624:141–146. doi:10.1016/j.physletb.2005.08.008

    Article  ADS  Google Scholar 

  42. Karami K, Sorouri, A (2010) Interacting entropy-corrected new agegraphic dark energy in the non-flat universe. Phys Scripta 82: Article no. 025901. doi:10.1088/0031-8949/82/02/025901

  43. Sheykhi A (2010) Interacting agegraphic tachyon model of dark energy. Phys Lett B 682:329–333. doi:10.1016/j.physletb.2009.11.034

    Article  ADS  Google Scholar 

  44. Gong Y, Wang A (2007) Reconstruction of the deceleration parameter and the equation of state of dark energy. Phys Rev D 75: Article no. 043520. doi:10.1103/PhysRevD.75.043520

  45. Sahni V, Saini TD, Starobinsky AA, Alam U (2003) Statefinder: a new geometrical diagnostic of dark energy. JETP Lett 77: 201–206. doi:10.1134/1.1574831

    Article  ADS  Google Scholar 

  46. Cai YF, Saridakis EN, Setare MR, Xia JQ (2010) Quintom cosmology: theoretical implications and observations. Phys Rep 493:1–60. doi:10.1016/j.physrep.2010.04.001

    Article  MathSciNet  ADS  Google Scholar 

  47. Alam U, Sahni V, Saini TD, Starobinsky AA (2003) Exploring the expanding universe and dark energy using the statefinder diagnostic. Mon Not R Astron Soc 344: 1057–1074. doi:10.1046/j.1365-8711.2003.06871.x

    Article  ADS  Google Scholar 

  48. Wang FY, Dai ZG, Qi S (2009) Probing the cosmographic parameters to distinguish between dark energy and modified gravity models. Astron Astrophys 507:53–59. doi:10.1051/0004-6361/200911998

    Article  MATH  ADS  Google Scholar 

  49. Wu P, Yu H (2010) Observational constraints on f(T) theory. Phys Lett B 693:415–420. doi:10.1016/j.physletb.2010.08.073

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgement

The author wishes to acknowledge the financial support from the Department of Science and Technology, Government of India under the Fast Track Scheme for Young Scientists. The Grant No. is SR/FTP/PS-167/2011. Also, the author sincerely acknowledges the Visiting Associateship provided by Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Chattopadhyay.

Additional information

The author is a Visiting Associate of the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, S. A Study on the Interacting Ricci Dark Energy in f(RT) Gravity. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 84, 87–93 (2014). https://doi.org/10.1007/s40010-013-0090-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-013-0090-8

Keywords

Navigation