Skip to main content
Log in

Analytical Characterization of Secondary Metabolites from Indian Xenorhabdus Species the Symbiotic Bacteria of Entomopatathogenic Nematode (Steinernema spp.) as Antifungal Agent

  • Short Communication
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

Steinernema is symbiotically associated with bacteria of the genus Xenorhabdus. It produces a wide range of bioactive metabolites including antimicrobial substances that inhibit the growth of bacteria, fungi and other microbes. Bacterial broth of different strains of Xenorhabus [(X. assam-isolate (SG as1), X. indica and X. Gujarat-isolate (SG gj)] was extracted with ethyl acetate. Potential activity resided in the ethyl acetate extract. X. assam-isolate (Sg as1) exhibited highest antifungal activity (EC50 55.98 μg ml−1) against M. phaseolina. LC–MS analysis of the ethyl acetate extract of most active isolate showed the presence of three major groups of compounds viz. nematophins, xenocoumacins and xenorhabdins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Ehlers RU (1996) Current and future use of nematodes in biocontrol: practice and commercial aspects with regard to regulatory policy issues. Biocontrol Sci Technol 6:303–316

    Article  Google Scholar 

  2. Ehlers RU (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56:623–633

    Article  Google Scholar 

  3. Georgis R, Kaya HK (1998) Formulation of entomopathogenic nematodes. In: Burges HD (ed) Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatments. Kluwer, Dordrecht, pp 289–308

    Chapter  Google Scholar 

  4. Rovesti L, Dese KV (1990) Compatibility of chemical pesticides with the entomopathogenic nematodes, Steinernema carpocapsae Weiser and S. feltiae Filipjev (Nematoda: Steinernematidae). Nematologica 36:237–245

    Article  Google Scholar 

  5. Stark JD (1996) Entomopathogenic nematodes (Rhabditida: Steinernematidae): toxicity of neem. J Econ Entomol 89:68–73

    Article  Google Scholar 

  6. Kaya HK, Burlando TM, Choo HY (1995) Integration of entomopathogenic nematodes with Bacillus thuringiensis or pesticidal soap for control of insect pests. Biol Control 5:432–441

    Article  Google Scholar 

  7. Akhurst RJ (1982) Antibiotic activity of Xenorhabdus spp.: bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditis and Steinernematidae. J Gen Microbiol 128:3061–3065

    Google Scholar 

  8. Paul VJ, Frautschy S, Fenical W, Nealson KH (1981) Antibiotics in microbial ecology, isolation and structure assignment of several new antibacterial compounds from the insect symbiotic bacteria Xenorhabdus spp. J Chem Ecol 7:589–597

    Article  Google Scholar 

  9. Webster JM, Li JX, Chen GH (1996) Indole derivatives with antibacterial and antimycotic properties. United States Patent 5569668

  10. McInerney BV, Gregson RP, Lacey MJ, Akhurst RJ, Lyons GR, Rhodes SH, Smith DRJ, Engelhardt LM (1991) Biologically active metabolites from Xenorhabdus spp. Part 1. Dithiolopyrrolone derivatives with antibiotic activity. J Nat Prod 54:774–784

    Article  Google Scholar 

  11. McInerney BV, Taylor WC, Lacey MJ, Akhurst RJ, Gregson RP (1991) Biologically active metabolites from Xenorhabdus spp. Part 2. Benzopyran-1-one derivatives with gastroprotective activity. J Nat Prod 54:785–795

    Article  Google Scholar 

  12. Lang G, Kalvelage T, Peters A, Wiese J, Imhoff JF (2008) Peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. J Nat Prod 71:1074–1077

    Article  Google Scholar 

  13. Li JX, Chen GH, Webster JM (1997) Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Can J Microbiol 43:770–773

    Article  Google Scholar 

  14. Li JX, Chen GH, Webster JM, Czyzewska E (1995) Antimicrobial metabolites from a bacterial symbiont. J Nat Prod 58:1081–1086

    Article  Google Scholar 

  15. Chen C, Dunphy GB, Webster JM (1994) Antifungal activity of two Xenorhabdus species and Photohabdus luminescens, bacteria associated with the nematodes Steinernema species and Heterorhabditis megidis. Biol Control 4:157–162

    Article  Google Scholar 

  16. Webster JM, Chen G, Hu K, Li J (2002) Bacterial metabolites. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, Wallingford, pp 99–114

    Chapter  Google Scholar 

  17. Wang H, Liu Y, Dong H, Qin L, Cong B, Li T (2011) Antibiotic activity of bacterial isolates associated with entomopathogenic nematodes. Afr J Microbiol Res 5:5039–5045

    Google Scholar 

  18. Sztaricskai F, Denya Z, Batta G, Szallas E, Szentirmai A, Fodor A (1992) Anthraquinones produced by enterobacters and nematodes. ACH Models Chem 129:697–707

    Google Scholar 

  19. Richardson WH, Schmidt TM, Nealson KH (1988) Identification of an anthraquinone and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Appl Environ Microbiol 54:1602–1605

    Google Scholar 

  20. Pranaw K, Singh S, Dutta D, Singh N, Sharma G, Ganguly S, Kalia V, Nain L (2013) Extracellular novel metalloprotease from Xenorhabdus indica and its potential as an insecticidal agent. J Microbiol Biotechnol 23(11):1536–1541

    Article  Google Scholar 

  21. Akhurst RJ, Boemare NE (1988) A numerical taxonomic study of the genus Xenorhabdus (enterobacteriacea) and proposed elevation of the subspecies of X. nematophilusto species. J Gen Microbiol 134(7):1835–1845

    Google Scholar 

  22. Nene YL, Thapliyal PN (1979) Fungicides in plant disease control. Oxford and IBH Publishing Co., New Delhi, pp 314–413

    Google Scholar 

  23. Li J, Hu K, Webster JM (1998) Antibiotics from Xenorhabdus spp. and Photorhabdus spp. (Enterobacteriaceae). Chem Heterocycl Compd 34:1331–1339

    Article  Google Scholar 

  24. Bode HB (2009) Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 13:224–230

    Article  Google Scholar 

  25. Yang X, Qiu D, Yang H, Liu Z, Zeng H, Yuan J (2011) Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans. World J Microbiol Biotechnol 27:523–528

    Article  Google Scholar 

  26. Webster JM, Li J, Chen G (1988) Xenomins novel heterocyclic compounds with antimicrobial and antineoplastic properties. United States Patent 5827872

Download references

Acknowledgments

This study was supported by World Bank funded National Agricultural Innovative Project (NAIP) Indian Council of Agricultural Research (ICAR). The authors are thankful to Heads of the Division of Agricultural Chemicals and Division of Nematology, IARI, New Delhi for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushbu Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Walia, S., Ganguli, S. et al. Analytical Characterization of Secondary Metabolites from Indian Xenorhabdus Species the Symbiotic Bacteria of Entomopatathogenic Nematode (Steinernema spp.) as Antifungal Agent. Natl. Acad. Sci. Lett. 39, 175–180 (2016). https://doi.org/10.1007/s40009-016-0453-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-016-0453-1

Keywords

Navigation