Skip to main content
Log in

Axially Symmetric Bianchi Type-I Bulk Viscous Cosmological Model with Time Varying Gravitational and Cosmological Constants

  • Research Article
  • Published:
National Academy Science Letters Aims and scope Submit manuscript

Abstract

The present study deals with spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model with time variable G and Λ in the presence of bulk viscous fluid. The coefficient of bulk viscosity ζ is considered as a quadratic function of Hubble parameter H (i.e. ζ = ζ 0 + ζ 1 H + ζ 2 H 2, where ζ 0, ζ 1 and ζ 2 are constants). The Einstein’s field equations are solved explicitly by using a law of variation for the Hubble parameter, which gives a constant value of deceleration parameter. The law generates power law and exponential form of average scale factor in terms of cosmic time. The physical and kinematical properties of the models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Perlmutter S, Gabi S, Goobar A, Groom DE, Hook IM, Kim AG, Kim MY, Lee JC, Pain R, Pannypackr CR, Small IA, Ellis RS, McMahon RG, Boyle BJ, Bunclark PS, Carter D, Irwin MJ, Glazebrook K, Newberg HJM, Filippenko AV, Mathesson T, Dopita M, Couch WJ (1997) Measurements of the cosmological parameters Ω and Λ from the first seven supernovae at z ≥ 0.35. Astrophys J 483:565–585

    Article  Google Scholar 

  2. Perlmutter S, Aldering G, Della Valle M, Deustua S, Ellis RS, Fabbro S, Fruchter A, Goldhaber G, Groom DE, Hook IM, Kim AG, Kim MY, Knop RA, Lidman C, McMahon RG, Nugent P, Pain R, Panagia N, Pennypacker CR, Ruiz-Lapuente P, Schaefer B, Walton N (1998) Discovery of supernova explosion at half the age of the universe. Nature 391:51–54

    Article  Google Scholar 

  3. Perlmutter S, Aldering G, Goldhaber G, Knop RA, Nugent P, Castro PG, Deustua S, Fabbro S, Goobar A, Groom DE, Hook IM, Kim AG, Kim MY, Lee JC, Nunes NJ, Pain R, Pannypacekr CR, Quimby R, Lidman C, Ellis RS, Irwin M, McMahon RG, Ruiz-Lapuente P, Walton N, Schaefer B, Boyle BJ, Filippenko AV, Matheson T, Fruchter AS, Panagia N, Newberg HJM, Couch WJ, the supernova cosmology project (1999) Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys J 517:565–585

    Article  Google Scholar 

  4. Riess AG, Filippenko Challis P, Clocchiatti A, Diercks A, Garnavich PM, Gilliland RL, Hogan CJ, Jha S, Kirshner RP, Leibundgut B, Philips MM, Reiss D, Schmidt BP, Schommer RA, Smith RC, Spyromilio J, Stubbs C, Suntzeff NB, Tonry J (1998) Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron J 116:1009–1038

    Article  Google Scholar 

  5. Dolgov AD (1983) In: Gibbons GW, Hawking SW, Siklos STC (eds) The very early universe. Cambridge University Press, Cambridge, p 449

  6. Chen W, Wu YS (1990) Implication of a cosmological constant varying as R −2. Phys Rev D 41:695–698

    Article  Google Scholar 

  7. Pavon D (1991) Non equilibrium fluctions in cosmic vacuum decay. Phys Rev D 43:375–378

    Article  Google Scholar 

  8. Carvalho JC, Lima JAS, Waga I (1992) Cosmological consequences of a time dependent Λ-term. Phys Rev D 46:2404–2407

    Article  Google Scholar 

  9. Lima JAS, Maia JMF (1994) Deflationary cosmology with decaying vacuum energy density. Phys Rev D 49:5597

    Article  Google Scholar 

  10. Lima JAS, Trodden M (1996) Decaying vacuum energy and deflationary cosmology in open and closed universes. Phys Rev D 53:4280–4286

    Article  Google Scholar 

  11. Arbab AI, Abdel-Rahaman AMM (1994) Nonsingular cosmology with a time dependent cosmological term. Phys Rev D 50:7725–7728

    Article  Google Scholar 

  12. Vishwakarma RG (2001) Study of the magnitude–redshift relation for type 1a supernova in a model resulting from a Ricci-symmetry. Gen Relat Gravit 33:1973–1984

    Article  Google Scholar 

  13. Dirac PAM (1937) The cosmological constant. Nature 139:323

    Article  Google Scholar 

  14. Canuto VM, Narlikar JV (1980) Cosmological tests of the Hoyle–Narlikar conformal gravity. Astrophys J 236:6–23

    Article  Google Scholar 

  15. Abdussattar, Vishwakarma RG (1997) Some FRW models with variable G andΛ. Class Quantum Gravity 14:945–953

    Article  Google Scholar 

  16. Arbab AI (1998) Viscous big bang cosmology with variable G andΛ. Astro-ph/9810213

  17. Arbab AI (1997) Cosmological models with variable cosmological and gravitational constants and bulk viscous models. Gen Relat Gravit 29:61–74

    Article  Google Scholar 

  18. Beesham A (1986) Comment on the paper, the cosmological constant Λ as a possible link to Einstein theory of gravity, the problem of hadronic and creation. Nuovo Cimento B 96:17–20

    Article  Google Scholar 

  19. Kalligas D, Wesson PS, Everitt CWF (1992) Flat FRW models with variable G andΛ. Gen Relat Gravit 24:351–357

    Article  Google Scholar 

  20. Vishwakarma RG (2005) A model to explain varying Λ, G and σ 2 simultaneously. Gen Relat Gravit 37:1305–1311

    Article  Google Scholar 

  21. Bali R, Tinker S (2009) Bianchi type-III bulk viscous barotropic fluid cosmological models with variable G and Λ. Chin Phys Lett 26:029802–029804

    Article  Google Scholar 

  22. Pradhan A, Yadav L, Yadav AK (2005) Generation of Bianchi type-V cosmological models with varying Λ term. Czech J Phys 55:503–518

    Article  Google Scholar 

  23. Saha B (2005) Bianchi type-I universe with viscous fluid. Mod Phys Lett A 20:2127–2144

    Article  Google Scholar 

  24. Singh CP, Beesham A (2010) Anisotropic Bianchi type-V perfect fluid space-time with variable G andΛ. Int J Mod Phys A 25:3824–3825

    Google Scholar 

  25. Singh JP, Pradhan A, Singh AK (2008) Bianchi type-I cosmological models with variable G and Λ term in general relativity. Astrophys Space Sci 314:83–88

    Article  Google Scholar 

  26. Yadav AK, Pradhan A, Singh AK (2012) Bulk viscous Bianchi type-I universe with variable G andΛ. Astrophys Space Sci 337:379–385

    Article  Google Scholar 

  27. Misner CW (1967) Transport processes in the primordial fireball. Nature 214:40–41

    Article  Google Scholar 

  28. Misner CW (1968) The isotropy of the universe. Astrophys J 151:431–457

    Article  Google Scholar 

  29. Weinberg S (1971) Entropy generation and the survival of proto galaxies in an expanding universe. Astrophys J 168:175–194

    Article  Google Scholar 

  30. Murphy GL (1973) Big bang without singularities. Phys Rev D 8:423–4233

    Article  Google Scholar 

  31. Padmanabhan T, Chitre SM (1987) Viscous universe. Phys Lett A 120:433–436

    Article  Google Scholar 

  32. Belinskii VA, Khalatnikov IM (1976) Effect of viscosity on nature of cosmological evolution. Sov Phys JETP 42:205–210

    Google Scholar 

  33. Singh CP (2009) Imperfect fluid cosmology with heat flow. Gravit Cosmol 15:381–390

    Article  Google Scholar 

  34. Meng Xin-he, Ma Zhi-yuan (2012) Rip/singularity free cosmological models with bulk viscosity. Eur Phys J C 72:2053–2057

    Article  Google Scholar 

  35. Collins CB, Stewart JM (1971) Qualitative cosmology. Mon Notices R Astron Soc 153:419–434

    Google Scholar 

  36. Coley AA, Tupper BOJ (1984) Imperfect fluid cosmology with thermodynamics: some exact solutions. Astrophys J 280:26–33

    Article  Google Scholar 

  37. Santos NO, Dias RS, Banerjee A (1985) Isotropic homogeneous universe with bulk viscous fluid. J Math Phys 26:876–882

    Article  Google Scholar 

  38. Banerjee A, Duttachaudhary SB, Sanyal AK (1986) Bianchi type-II cosmological model with viscous fluid. Gen Relat Gravit 18:461–477

    Article  Google Scholar 

  39. Banerjee A, Sanyal AK (1986) Homogeneous anisotropic cosmological models with viscous fluid and magnetic field. Gen Relat Gravit 12:1251–11262

    Article  Google Scholar 

  40. Johri VB, Sudarshan R (1988) Friedmann universes with bulk viscosity. Phys Lett A 132:316–320

    Article  Google Scholar 

  41. Pavon D, Zimdahl W (1993) Dark matter and dissipation. Phys Lett A 179:261–265

    Article  Google Scholar 

  42. Reddy DRK, Rao MVS (2006) Axially symmetric string cosmological model in Brans–Dicke theory of gravitation. Astrophys Space Sci 305:183–186

    Article  Google Scholar 

  43. Reddy DRK, Rao MVS, Kelkar I (2006) Axially symmetric radiating model in Brans–Dicke cosmology. Astrophys Space Sci 306:1–3

    Article  Google Scholar 

  44. Reddy DRK, Naidu RL, Rao VUM (2006) Axially symmetric cosmic strings in a scalar tensor theory. Astrophys Space Sci 306:185–188

    Article  Google Scholar 

  45. Reddy DRK, Naidu RL, Adhav KS (2007) A cosmological model with a negative constant deceleration parameter in scale covariant theory of gravitation. Astrophys Space Sci 307:365–367

    Article  Google Scholar 

  46. Berman MS (1983) A special law of Hubble’s parameter. Nuovo Cimento B 74:182–186

    Article  Google Scholar 

  47. Berman MS, Gomide F (1988) Cosmological models with constant deceleration parameter. Gen Relat Gravit 20:191–198

    Article  Google Scholar 

  48. Saha B (2006) Anisotropic cosmological models with perfect fluid and a Λterm. Astrophys Space Sci 302:83–91

    Article  Google Scholar 

  49. Maharaj SD, Naidoo R (1993) Solutions to the field equations and deceleration parameter. Astrophys Space Sci 208:261–276

    Article  Google Scholar 

  50. Kumar S (2011) Some FRW models of accelerating universe of dark energy. Astrophys Space Sci 332:449–454

    Article  Google Scholar 

  51. Pradhan A, Amirhaschi H, Saha B (2011) Bianchi type-I anisotropic dark energy models with constant deceleration parameter. Int J Theor Phys 50:2923–2938

    Article  Google Scholar 

  52. Amirhaschi H, Pradhan A, Saha B (2011) Variable equation of state for Bianchi type VI 0 dark energy models. Astrophys Space Sci 333:295–303

    Article  Google Scholar 

  53. Baghel PS, Singh JP (2012) Bianchi type V universe with bulk viscous matter and time varying gravitational and cosmological constants. Research in Astron Astrophys 11:1457–1466

    Article  Google Scholar 

  54. Vishwakarma RG (2000) A study of angular size redshift relation for the models in which lambda decays as the energy density. Class Quant Grav 17:3833–3842

    Article  Google Scholar 

  55. Starobinskii AA (1981) Can the effective gravitational constant become negative? Sov Astron Lett 7:36–38

    Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support of UGC, New Delhi and the department of Mathematics, Gauhati University for giving facilities for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanika Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, K., Ali, N. Axially Symmetric Bianchi Type-I Bulk Viscous Cosmological Model with Time Varying Gravitational and Cosmological Constants. Natl. Acad. Sci. Lett. 37, 173–179 (2014). https://doi.org/10.1007/s40009-013-0222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40009-013-0222-3

Keywords

Navigation