Skip to main content

Advertisement

Log in

Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Ocular drug delivery has been widely recognized as an attractive route for drug administration for cures of ocular diseases. Overall, designing an effective therapy to cure ocular diseases has been considered as a formidable task. Even though some infectious or inflammatory eye diseases could be alleviated by eye drops or ointments, achieving the required therapeutic efficacy along with ocular bioavailability remains a challenge due to the numerous anatomical and physiological barriers prevailing in the eye. Drug delivery to the posterior segment of the eye is yet a more challenging task. In this context, a better understanding of physiologic natures of the eyes and ocular pharmacokinetics would facilitate the development of new drug delivery systems to treat various vision-threatening disorders. For the effective drug delivery to target sites and to enhance the ocular bioavailability, recent progress in formulation strategies using nanotechnologies holds promises in terms of devising improved ophthalmic medicines. Hence, this review presents an overview of various aspects of ocular drug delivery, with a specific emphasis on nanocarrier-based strategies, including physiological barriers in eyes and conventional drug formulations. Recent research on sustained, controlled, and targeted systems for ocular drug delivery was updated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

[Reproduced with modifications from Liu et al. (2012), with permission]

Similar content being viewed by others

References

  • Abd El-Gawad AEH, Soliman OA, El-Dahan MS, Al-Zuhairy SAS (2017) Improvement of the ocular bioavailability of econazole nitrate upon complexation with cyclodextrins. AAPS Pharm Sci Tech 18:1795–1809

    Article  CAS  Google Scholar 

  • Abdelbary GA, Amin MM, Zakaria MY (2017) Ocular ketoconazole-loaded proniosomal gels: formulation, ex vivo corneal permeation and in vivo studies. Drug Deliv 24:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Achouri D, Alhanout K, Piccerelle P, Andrieu V (2013) Recent advances in ocular drug delivery. Drug Dev Ind Pharm 39:1599–1617

    Article  CAS  PubMed  Google Scholar 

  • Agnihotri SM, Vavia PR (2009) Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomed Nanotechnol Biol Med 5:90–95

    Article  CAS  Google Scholar 

  • Agueros M, Zabaleta V, Espuelas S, Campanero MA, Irache JM (2010) Increased oral bioavailability of paclitaxel by its encapsulatin through complex formation with cyclodextrins in poly(anhydride) nanoparticles. J Control Release 145:2–8

    Article  CAS  PubMed  Google Scholar 

  • Akula SK, Ma PE, Peyman GA, Rahimy MH, Hyslop NE, Janney A, Ashton P (1994) Treatment of cytomegalovirus retinitis with intravitreal injection of liposome encapsulated ganciclovir in a patient with AIDS. Br J Ophthalmol 78:677–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Halafi AM (2014) Nanocarriers of nanotechnology in retinal diseases. Saudi J Ophthalmol 28:304–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali HS, York P, Ali AM, Blagden N (2011) Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 149:175–181

    Article  CAS  PubMed  Google Scholar 

  • Allam AN, El Gamal S, Naggar V (2011) Formulation and evaluation of acyclovir niosomes for ophthalmic use. Asian J Pharm Biol Res 1:28–40

    Google Scholar 

  • Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48

    Article  CAS  PubMed  Google Scholar 

  • Ambati J, Adamis AP (2002) Transscleral drug delivery to the retina and choroid. Prog Retin Eye Res 21:145–151

    Article  CAS  PubMed  Google Scholar 

  • Ames P, Galor A (2015) Cyclosporine ophthalmic emulsions for the treatment of dry eye: a review of the clinical evidence. Clin Investig (Lond) 5:267–285

    Article  CAS  Google Scholar 

  • Anand S, Braga VML (2016) Cyclodextrins in ocular drug delivery. In: Nano-biomaterials for ophthalmic drug delivery. Springer, Cham, pp 243–252

  • Anand BS, Mitra AK (2002) Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm Res 19:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Baranowski P, Karolewicz B, Gajda M, Pluta J (2014) Ophthalmic drug dosage forms: characterisation and research methods. Sci World J 2014:861904

    Article  Google Scholar 

  • Barar J, Aghanejad A, Fathi M, Omidi Y (2016) Advanced drug delivery and targeting technologies for the ocular diseases. Bioimpacts 6:49–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barot RK, Shitole SC, Bhagat N, Patil D, Sawant P, Patil K (2016) Therapeutic effect of 0.1% tacrolimus eye ointment in allergic ocular diseases. J Clin Diagn Res 10:NC05–N09

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R (1998) Ophthalmic drug delivery systems—recent advances. Prog Retin Eye Res 17:33–58

    Article  CAS  PubMed  Google Scholar 

  • Calles JA, Lopez-Garcia A, Valles EM, Palma SD, Diebold Y (2016) Preliminary characterization of dexamethasone-loaded cross-linked hyaluronic acid films for topical ocular therapy. Int J Pharm 509:237–243

    Article  CAS  PubMed  Google Scholar 

  • Chou TY, Hong BY (2014) Ganciclovir ophthalmic gel 0.15% for the treatment of acute herpetic keratitis: background, effectiveness, tolerability, safety, and future applications. Ther Clin Risk Manag 10:665–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comstock TL, Paterno MR, Singh A, Erb T, Davis E (2011) Safety and efficacy of loteprednol etabonate ophthalmic ointment 0.5% for the treatment of inflammation and pain following cataract surgery. Clin Ophthalmol 5:177–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conway BR (2008) Recent patents on ocular drug delivery systems. Recent Patents Drug Deliv Formulation 2:1–8

    Article  CAS  Google Scholar 

  • Davis BM, Normando EM, Guo L, Turner LA, Nizari S, O’Shea P, Moss SE, Somavarapu S, Cordeiro MF (2014) Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small 10:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Dey S, Mitra AK (2005) Transporters and receptors in ocular drug delivery: opportunities and challenges. Expert Opin Drug Deliv 2:201–204

    Article  CAS  PubMed  Google Scholar 

  • Ding S (1998) Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today 1:328–335

    Article  CAS  Google Scholar 

  • Drew WL, Ives D, Lalezari JP, Crumpacker C, Follansbee SE, Spector SA, Benson CA, Friedberg DN, Hubbard L, Stempien MJ (1995) Oral ganciclovir as maintenance treatment for cytomegalovirus retinitis in patients with AIDS. N Engl J Med 333:615–620

    Article  CAS  PubMed  Google Scholar 

  • du Toit LC, Pillay V, Choonara YE, Govender T, Carmichael T (2011) Ocular drug delivery—a look towards nanobioadhesives. Expert Opin Drug Deliv 8:71–94

    Article  CAS  PubMed  Google Scholar 

  • Dubey A, Prabhakara P (2014) Ocular drug delivery systems for treatment of glaucoma. Int J Pharm Sci Nanotech 7:1–11

    Google Scholar 

  • Dugel PU, Bandello F, Loewenstein A (2015) Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Clin Ophthalmol 9:1321–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fathi M, Barar J, Aghanejad A, Omidi Y (2015) Hydrogels for ocular drug delivery and tissue engineering. Bioimpacts 5:159–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedman KA, Klein JW, Crosson CE (1993) Beta-cyclodextrins enhance bioavailability of pilocarpine. Curr Eye Res 12:641–647

    Article  CAS  PubMed  Google Scholar 

  • Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Controll Release 109:169–188

    Article  CAS  Google Scholar 

  • Gaudana R, Jwala J, Boddu SH, Mitra AK (2009) Recent perspectives in ocular drug delivery. Pharm Res 26:1197–1216

    Article  CAS  PubMed  Google Scholar 

  • Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12:348–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geetha G, Poojitha U, Khan UAA (2014) Various techniques for preparation of nanosuspension—a review. Int J Pharma Res Rev 3:30–37

    CAS  Google Scholar 

  • Geroski DH, Edelhauser HF (2000) Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci 41:961–964

    CAS  PubMed  Google Scholar 

  • Glogowski S, Lowe E, Siou-Mermet R, Ong T, Richardson M (2014) Prolonged exposure to loteprednol etabonate in human tear fluid and rabbit ocular tissues following topical ocular administration of Lotemax gel, 0.5%. J Ocul Pharmacol Ther 30:66–73

    Article  CAS  PubMed  Google Scholar 

  • Gunda S, Hariharan S, Mandava N, Mitra AK (2008) Barriers in ocular drug delivery. In: Ocular transporters in ophthalmic diseases and drug delivery. Humana Press, New York, pp 399–413

  • Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D (2010) Liposomes as an ocular delivery system of fluconazole: in-vitro studies. Acta ophthalmologica 88:901–904

    Article  CAS  PubMed  Google Scholar 

  • Hathout RM, Mansour S, Mortada ND, Guinedi AS (2007) Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS Pharm Sci Tech 8:E1–E12

    Article  Google Scholar 

  • Hironaka K, Inokuchi Y, Tozuka Y, Shimazawa M, Hara H, Takeuchi H (2009) Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J Control Release 136:247–253

    Article  CAS  PubMed  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  • Huang AJ, Tseng SC, Kenyon KR (1989) Paracellular permeability of corneal and conjunctival epithelia. Invest Ophthalmol Vis Sci 30:684–689

    CAS  PubMed  Google Scholar 

  • Jervis L (2017) A summary of recent advances in ocular inserts and implants. J Bioequiv Available 9:320–323

    CAS  Google Scholar 

  • Johannsdottir S, Jansook P, Stefansson E, Loftsson T (2015) Development of a cyclodextrin-based aqueous cyclosporine A eye drop formulations. Int J Pharm 493:86–95

    Article  CAS  PubMed  Google Scholar 

  • Jwala J (2011) Sustained release nanoparticles containing acyclovir prodrugs for ocular herpes simplex keratitis and characterization of folate transport proteins in a corneal epithelial cell line. Doctoral dissertation, University of Missouri-Kansas City

  • Kalam MA, Alshamsan A, Aljuffali IA, Mishra AK, Sultana Y (2016) Delivery of gatifloxacin using microemulsion as vehicle: formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug Deliv 23:896–907

    Article  CAS  PubMed  Google Scholar 

  • Kamaleddin MA (2017) Nano-ophthalmology: applications and considerations. Nanomedicine 13:1459–1472

    Article  CAS  PubMed  Google Scholar 

  • Kang-Mieler JJ, Osswald CR, Mieler WF (2014) Advances in ocular drug delivery: emphasis on the posterior segment. Expert Opin Drug Deliv 11:1647–1660

    Article  CAS  PubMed  Google Scholar 

  • Kang-Mieler JJ, Dosmar E, Liu W, Mieler WF (2017) Extended ocular drug delivery systems for the anterior and posterior segments: biomaterial options and applications. Expert Opin Drug Deliv 14:611–620

    Article  CAS  PubMed  Google Scholar 

  • Kassem M, Rahman AA, Ghorab M, Ahmed M, Khalil R (2007) Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm 340:126–133

    Article  CAS  PubMed  Google Scholar 

  • Kaur IP, Smitha R (2002) Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev Ind Pharm 28:353–369

    Article  CAS  PubMed  Google Scholar 

  • Kaur IP, Kapil M, Smitha R, Aggarwal D (2004) Development of topically effective formulations of acetazolamide using HP-β-CD-polymer co-complexes. Curre Drug Deliv 1:65–72

    Article  CAS  Google Scholar 

  • Kim YC, Chiang B, Wu X, Prausnitz MR (2014) Ocular delivery of macromolecules. J Control Release 190:172–181

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S, Awamura S, Oshiden K, Nakamichi N, Suzuki H, Yokoi N, Rebamipide Ophthalmic Suspension Phase IISG (2012) Rebamipide (OPC-12759) in the treatment of dry eye: a randomized, double-masked, multicenter, placebo-controlled phase II study. Ophthalmology 119:2471–2478

    Article  PubMed  Google Scholar 

  • Kompella UB, Kadam RS, Lee VH (2010) Recent advances in ophthalmic drug delivery. Ther Deliv 1:435–456

    Article  CAS  PubMed  Google Scholar 

  • Kumaran K, Karthika K, Padmapreetha J (2010) Comparative review on conventional and advanced ocular drug delivery formulations. Int J Pharm Pharm Sci 2:1–5

    Google Scholar 

  • Lang JC (1995) Ocular drug delivery conventional ocular formulations. Adv Drug Deliv Rev 16:39–43

    Article  CAS  Google Scholar 

  • Lee J, Pelis RM (2016) Drug transport by the blood-aqueous humor barrier of the eye. Drug Metab Dispos 44:1675–1681

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Hughes P, Ross AD, Robinson MR (2010) Biodegradable implants for sustained drug release in the eye. Pharm Res 27:2043–2053

    Article  CAS  PubMed  Google Scholar 

  • Leonardi A, Van Setten G, Amrane M, Ismail D, Garrigue JS, Figueiredo FC, Baudouin C (2016) Efficacy and safety of 0.1% cyclosporine A cationic emulsion in the treatment of severe dry eye disease; a multicenter randomized trial. Eur J Ophthalmol 26:287–296

    Article  PubMed  Google Scholar 

  • Liu Y, Lin X, Tang X (2009) Lipid emulsions as a potential delivery system for ocular use of azithromycin. Drug Dev Ind Pharm 35:887–896

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Jones L, Gu FX (2012) Nanomaterials for ocular drug delivery. Macromol Biosci 12:608–620

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Stefansson E (2002) Cyclodextrins in eye drop formulations: enhanced topical delivery of corticosteroids to the eye. Acta Ophthalmol Scand 80:144–150

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Stefansson E (2017) Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. Int J Pharm 531:413–423

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Hreinsdottir D, Stefansson E (2007) Cyclodextrin microparticles for drug delivery to the posterior segment of the eye: aqueous dexamethasone eye drops. J Pharm Pharmacol 59:629–635

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Jansook P, Stefansson E (2012) Topical drug delivery to the eye: dorzolamide. Acta Ophthalmol 90:603–608

    Article  CAS  PubMed  Google Scholar 

  • Mahajan HS, Shah NN, Nerkar PP, Kulkarni A, Shirpur M (2012) Niosomes encapsulated with Gatiflaxacin for ocular drug delivery. Recent Adv Pharm Sci Res 1(1):28 39

    Google Scholar 

  • Makwana SB, Patel VA, Parmar SJ (2016) Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci 6:1–6

    Article  CAS  PubMed  Google Scholar 

  • Mannermaa E, Vellonen KS, Urtti A (2006) Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev 58:1136–1163

    Article  CAS  PubMed  Google Scholar 

  • Maurice D, Mishima S (1984) Ocular pharmacokinetics. In: Pharmacology of the eye. Springer, Berlin, Heidelberg, pp 19–116

  • McConville J (2016) Special focus issue: ocular and ophthalmic drug delivery systems. Drug Dev Ind Pharm 42:513

    Article  CAS  PubMed  Google Scholar 

  • Mishra GP, Bagui M, Tamboli V, Mitra AK (2011) Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv 2011:863734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison PW, Khutoryanskiy VV (2014) Advances in ophthalmic drug delivery. Ther Deliv 5:1297–1315

    Article  CAS  PubMed  Google Scholar 

  • Moya-Ortega MD, Alves TF, Alvarez-Lorenzo C, Concheiro A, Stefansson E, Thorsteinsdottir M, Loftsson T (2013) Dexamethasone eye drops containing γ-cyclodextrin-based nanogels. Int J Pharm 441:507–515

    Article  CAS  PubMed  Google Scholar 

  • Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK (2009) Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 136:2–13

    Article  CAS  PubMed  Google Scholar 

  • Natarajan JV, Darwitan A, Barathi VA, Ang M, Htoon HM, Boey F, Tam KC, Wong TT, Venkatraman SS (2014) Sustained drug release in nanomedicine: a long-acting nanocarrier-based formulation for glaucoma. ACS Nano 8:419–429

    Article  CAS  PubMed  Google Scholar 

  • Nielsen CU, Brodin B, Jørgensen FS, Frokjaer S, Steffansen B (2002) Human peptide transporters: therapeutic applications. Expert Opin Ther Pat 12:1329–1350

    Article  CAS  Google Scholar 

  • Pan Q, Xu Q, Boylan NJ, Lamb NW, Emmert DG, Yang JC, Tang L, Heflin T, Alwadani S, Eberhart CG, Stark WJ, Hanes J (2015) Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J Control Release 201:32–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8:147–166

    Article  CAS  PubMed  Google Scholar 

  • Patel VR, Agrawal YK (2011) Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res 2:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel P, Shastri D, Shelat P, Shukla A (2010) Ophthalmic drug delivery system: challenges and approaches. Syst Rev Pharm 1:113

    Article  CAS  Google Scholar 

  • Patel A, Cholkar K, Agrahari V, Mitra AK (2013) Ocular drug delivery systems: an overview. World J Pharmacol 2:47–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patravale VB, Date AA, Kulkarni RM (2014) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56:827–840

    Article  CAS  Google Scholar 

  • Peynshaert K, Devoldere J, De Smedt SC, Remaut K (2018) In vitro and ex vivo models to study drug delivery barriers in the posterior segment of the eye. Adv Drug Deliv Rev 126:44–57

    Article  CAS  PubMed  Google Scholar 

  • Pu X, Sun J, Li M, He Z (2009) Formulation of nanosuspensions as a new approach for the delivery of poorly soluble drugs. Curr Nanosci 5:417–427

    Article  CAS  Google Scholar 

  • Robinson JC (1993) Ocular anatomy and physiology relevant to ocular drug delivery. Drugs Pharm Sci 58:29–57

    CAS  Google Scholar 

  • Rodriguez-Aller M, Guillarme D, El Sanharawi M, Behar-Cohen F, Veuthey JL, Gurny R (2013) In vivo distribution and ex vivo permeation of cyclosporine A prodrug aqueous formulations for ocular application. J Control Release 170:153–159

    Article  CAS  PubMed  Google Scholar 

  • Saari KM, Nelimarkka L, Ahola V, Loftsson T, Stefansson E (2006) Comparison of topical 0.7% dexamethasone-cyclodextrin with 0.1% dexamethasone sodium phosphate for postcataract inflammation. Graefes Arch Clin Exp Ophthalmol 244:620–626

    Article  CAS  PubMed  Google Scholar 

  • Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13:144–151

    Article  CAS  PubMed  Google Scholar 

  • Sai Y, Tsuji A (2004) Transporter-mediated drug delivery: recent progress and experimental approaches. Drug Discov Today 9:712–720

    Article  CAS  PubMed  Google Scholar 

  • Sangwan VS, Pearson PA, Paul H, Comstock TL (2015) Use of the fluocinolone acetonide intravitreal implant for the treatment of noninfectious posterior uveitis: 3-year results of a randomized clinical trial in a predominantly Asian population. Ophthalmol Therapy 4:1–19

    Article  Google Scholar 

  • Scoper SV, Kabat AG, Owen GR, Stroman DW, Kabra BP, Faulkner R, Kulshreshtha AK, Rusk C, Bell B, Jamison T, Bernal-Perez LF, Brooks AC, Nguyen VA (2008) Ocular distribution, bactericidal activity and settling characteristics of TobraDex ST ophthalmic suspension compared with TobraDex ophthalmic suspension. Adv Ther 25:77–88

    Article  CAS  PubMed  Google Scholar 

  • Senanayake P, Calabro A, Hu JG, Bonilha VL, Darr A, Bok D, Hollyfield JG (2006) Glucose utilization by the retinal pigment epithelium: evidence for rapid uptake and storage in glycogen, followed by glycogen utilization. Exp Eye Res 83:235–246

    Article  CAS  PubMed  Google Scholar 

  • Sharom FJ (2011) The P-glycoprotein multidrug transporter. Essays Biochem 50:161–178

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Tu J (2007) Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J 9:E371–E377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Gan L, Zhu C, Zhang X, Dong Y, Jiang M, Zhu J, Gan Y (2011) Novel NSAIDs ophthalmic formulation: flurbiprofen axetil emulsion with low irritancy and improved anti-inflammation effect. Int J Pharm 412:115–122

    Article  CAS  PubMed  Google Scholar 

  • Shende PK, Godbole R (2016) Current and novel techniques in the ophthalmic drug delivery systems. Int J Pharm Sci Res 7:3557–3566

    Google Scholar 

  • Sigurdsson HH, Stefansson E, Gudmundsdottir E, Eysteinsson T, Thorsteinsdottir M, Loftsson T (2005) Cyclodextrin formulation of dorzolamide and its distribution in the eye after topical administration. J Control Release 102:255–262

    Article  CAS  PubMed  Google Scholar 

  • Sigurdsson HH, Konraethsdottir F, Loftsson T, Stefansson E (2007) Topical and systemic absorption in delivery of dexamethasone to the anterior and posterior segments of the eye. Acta Ophthalmol Scand 85:598–602

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Li P, Beachley V, McDonnell P, Elisseeff JH (2015) A hyaluronic acid-binding contact lens with enhanced water retention. Cont Lens Anterior Eye 38:79–84

    Article  PubMed  Google Scholar 

  • Soliman OAE, Mohamed EAM, El-Dahan MS, Khatera NAA (2017) Potential use of cyclodextrin complexes for enhanced stability, anti-inflammatory efficacy and ocular bioavailability of loteprednol etabonate. AAPS Pharm Sci Tech 18:1228–1241

    Article  CAS  Google Scholar 

  • Sutradhar KB, Khatun S, Luna IP (2013) Increasing possibilities of nanosuspension. J Nanotechnol 2013:346581

    Article  CAS  Google Scholar 

  • Taha EI, El-Anazi MH, El-Bagory IM, Bayomi MA (2014) Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J 22:231–239

    Article  PubMed  Google Scholar 

  • Tajika T, Isowaki A, Sakaki H (2011) Ocular distribution of difluprednate ophthalmic emulsion 0.05% in rabbits. J Ocul Pharmacol Ther 27:43–49

    Article  CAS  PubMed  Google Scholar 

  • Tiwari G, Tiwari R, Rai AK (2010) Cyclodextrins in delivery systems: applications. J Pharm Bioallied Sci 2:72–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi P, Barros M, Stansbury JW, Kompella UB (2013) Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab. Mol Pharm 10:2858–2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58:1131–1135

    Article  CAS  PubMed  Google Scholar 

  • Vadlapatla RK, Vadlapudi AD, Pal D, Mitra AK (2014) Role of membrane transporters and metabolizing enzymes in ocular drug delivery. Curr Drug Metab 15:680–693

    Article  CAS  PubMed  Google Scholar 

  • Vaishya RD, Khurana V, Patel S, Mitra AK (2014) Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:422–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valls R, Vega E, Garcia ML, Egea MA, Valls JO (2008) Transcorneal permeation in a corneal device of non-steroidal anti-inflammatory drugs in drug delivery systems. Open Med Chem J 2:66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2009) Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des 15:2724–2750

    Article  CAS  PubMed  Google Scholar 

  • Willoughby CE, Ponzin D, Ferrari S, Lobo A, Landau K, Omidi Y (2010) Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function—a review. Clin Exp Ophthalmol 38:2–11

    Article  Google Scholar 

  • Winkler BS (1981) Glycolytic and oxidative metabolism in relation to retinal function. J Gen Physiol 77:667–692

    Article  CAS  PubMed  Google Scholar 

  • Xie B, Jin L, Luo Z, Yu J, Shi S, Zhang Z, Shen M, Chen H, Li X, Song Z (2015) An injectable thermosensitive polymeric hydrogel for sustained release of Avastin(R) to treat posterior segment disease. Int J Pharm 490:375–383

    Article  CAS  PubMed  Google Scholar 

  • Xuan M, Wang S, Liu X, He Y, Li Y, Zhang Y (2016) Proteins of the corneal stroma: importance in visual function. Cell Tissue Res 364:9–16

    Article  CAS  PubMed  Google Scholar 

  • Yadollahi R, Vasilev K, Simovic S (2015) Nanosuspension technologies for delivery of poorly soluble drugs. J Nanomater 2015:1

    Article  CAS  Google Scholar 

  • Yasin MN, Svirskis D, Seyfoddin A, Rupenthal ID (2014) Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. J Control Release 196:208–221

    Article  CAS  PubMed  Google Scholar 

  • Yellepeddi VK, Palakurthi S (2016) Recent advances in topical ocular drug delivery. J Ocul Pharmacol Ther 32:67–82

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Xiang C, Lu G (2016) Cationic lipid emulsions as potential bioadhesive carriers for ophthalmic delivery of palmatine. J Micoencapsul 33:718–724

    Article  CAS  Google Scholar 

  • Zhang R, He R, Qian J, Guo J, Xue K, Yuan YF (2010) Treatment of experimental autoimmune uveoretinitis with intravitreal injection of tacrolimus (FK506) encapsulated in liposomes. Invest Ophthalmol Vis Sci 51:3575–3582

    Article  PubMed  Google Scholar 

  • Zou L, Nair A, Weng H, Tsai YT, Hu Z, Tang L (2011) Intraocular pressure changes: an important determinant of the biocompatibility of intravitreous implants. PLoS One 6:e28720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2017R1C1B5015491 to Kyoung Ah Min and NRF-2015R1C1A1A02036781 to Meong Cheol Shin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Ah Min.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maharjan, P., Cho, K.H., Maharjan, A. et al. Pharmaceutical challenges and perspectives in developing ophthalmic drug formulations. J. Pharm. Investig. 49, 215–228 (2019). https://doi.org/10.1007/s40005-018-0404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-018-0404-6

Keywords

Navigation