Skip to main content

Advertisement

Log in

Synthesis, solid state characterization and antifungal activity of ketoconazole cocrystals

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Co-crystallization is a promising technique for improving the biopharmaceutical properties of active pharmaceutical ingredients. The objective of present study was to prepare co-crystals to improve physicochemical properties of BCS class II drug, ketoconazole (KTZ). KTZ co-crystals were prepared with various coformers including oxalic acid, fumaric acid and nicotinamide by solvent crystallization method. The prepared co-crystals were evaluated regarding their thermal properties, crystalline nature, appearance, mean particle size, intrinsic dissolution rate and antifungal potential. The prepared co-crystals demonstrated improved solubility and dissolution rate. Moreover, co-crystals showed good antifungal potential against Candida albicans (MCC 1094). The prepared cocrystals were found to be stable over the period of 6 months verified from stability studies. Therefore, the present study showed that co-crystals may be a potential approach for a BCS class II drug, KTZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aggarwal A, Jain S (2011) Physicochemical characterization and dissolution study of solid dispersions of ketoconazole with nicotinamide. Chem Pharm Bull 59:629–638

    Article  PubMed  CAS  Google Scholar 

  • Bandari S, Dronam V, Eedara B (2016) Development and preliminary characterization of levofloxacin pharmaceutical cocrystals for dissolution rate enhancement. J Pharm Investig. doi:10.1007/s40005-016-0302-8

    Article  Google Scholar 

  • Bian L, Zhao H, Hao H, Yin Q, Wu S, Gong J, Dong W (2013) Novel glutaric acid cocrystal formation via co grinding and solution crystallization. Chem Eng Technol 36:1292–1299

    Article  CAS  Google Scholar 

  • Che J, Wu Z, Shao W, Guo P, Lin Y, Pan W, Zeng W, Zhang G, Wu C, Xu Y (2015) Synergetic skin targeting effect of hydroxypropyl-b-cyclodextrin combined with microemulsion for ketoconazole. Eur J Pharm Biopharm 93:136–148

    Article  PubMed  CAS  Google Scholar 

  • Chiarell A, Davey R, Peterson M (2007) Making co-crystals: the utility of ternary phase diagrams. Cryst Growth Des 7:1223–1226

    Article  CAS  Google Scholar 

  • Dhapte V, Mehta P (2015) Advances in hydrotropic solutions: an updated review. St. Petersb Polytech Univ J Phys Math 1:424–435

    Google Scholar 

  • Esclusa-Diaz M, Gayo-Otero M, Pérez-Marcos M, Vila-Jato J, Torres-Labandeira J (1996) Preparation and evaluation of ketoconazole-β-cyclodextrin multicomponent complexes. Int J Pharm 142:183–187

    Article  CAS  Google Scholar 

  • Fleischman S, Kuduva S, McMahon J Moulton B, Bailey Walsh R, Rodríguez-Hornedo N, Zaworotko M (2003) Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Cryst Growth Des 3:909–919

    Article  CAS  Google Scholar 

  • Friscic T, Jones W (2009) Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst Growth Des 9:1621–1637

    Article  CAS  Google Scholar 

  • Gupta A, Daigle D, Foley K (2015) Drug safety assessment of oral formulations of ketoconazole. Expert Opin Drug Saf 14:325–334

    Article  PubMed  CAS  Google Scholar 

  • Higuchi T, Connors K (1965) Phase solubility techniques. Adv Anal Chem Instrum 4:117–212

    CAS  Google Scholar 

  • Kamble R, Mehta P, Kumar A (2016) Efavirenz self-nano-emulsifying drug delivery system: in vitro and in vivo evaluation. AAPS PharmSciTech 17:1240–1247

    Article  PubMed  CAS  Google Scholar 

  • Kuminek G, Cao F, de Oliveira da Rocha AB, Cardoso SG, Rodríguez-Hornedo N (2016) Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv Drug Deliv Rev 101:143–166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leyssens T, Tumanova N, Robeyns K, Candonib N, Veesler S (2014) Solution cocrystallization, an effective tool to explore the variety of cocrystal systems: caffeine/dicarboxylic acid cocrystals. Cryst Eng Comm 16:9603–9611

    Article  CAS  Google Scholar 

  • Lu E, Rodríguez-Hornedob N, Suryanarayanan R (2008) A rapid thermal method for cocrystal screening. CrystEngComm 10:665–668

    Article  CAS  Google Scholar 

  • Nehm S, Rodríguez-Spong B, Rodríguez-Hornedo N (2006) Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst Growth Des 6:592–600

    Article  CAS  Google Scholar 

  • Nijhawan M, Santhosh A, Babu P, Subrahmanyam C (2014) Solid state manipulation of lornoxicam for cocrystals-physicochemical characterization. Drug Dev Ind Pharm 40:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Patel R, Patel H, Baria A (2009) Formulation and evaluation of liposomes of ketoconazole. Int J Drug Deliv Technol 1:16–23

    Google Scholar 

  • Patil S, Kulkarni J, Mahadik K (2016) Exploring the potential of electrospray technology in cocrystal synthesis. Ind Eng Chem Res 55:8409–8414

    Article  CAS  Google Scholar 

  • Rahman Z, Agarabi C, Zidan A, Khan S, Khan M (2011) Physico mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSciTech 12:693–704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajalakshmi S, Pawar A, Mali A, Bothiraja C (2014) Crystal engineering of bioactive plumbagin using antisolvent precipitation, melt solidification and sonocrystallization techniques. Mater Res Express 1:1–19

    Article  CAS  Google Scholar 

  • Ramasamy T, Khandasami U, Ruttala H, Shanmugam S (2012) Development of solid lipid nanoparticles enriched hydrogels for topical delivery of anti-fungal agent. Macromol Res 20:682–692

    Article  CAS  Google Scholar 

  • Sanphui P, Bolla G, Nangia A, Chernyshev V (2014) Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt. Int Union Crystallogr 1:136–150

    Article  CAS  Google Scholar 

  • Sarah P, Hamad L, Torrisi S, Karamertzanis P, Leslie M, Catlow C (2006). Applications of DL_POLY and DL_MULTI to organic molecular crystals. Mol Simul 32:985–997

    Article  CAS  Google Scholar 

  • Shayanfar A, Jouyban A (2014) Physicochemical characterization of a new cocrystal of ketoconazole. Powder Technol 262:242–248

    Article  CAS  Google Scholar 

  • Shete A, Murthy S, Korpale S, Yadav A, Sajane S, Sakhare S, Doijad R (2015) Cocrystals of itraconazole with amino acids: screening, synthesis, solid state characterization, in vitro drug release and antifungal activity. J Drug Deliv Sci Technol 28:46–55

    Article  CAS  Google Scholar 

  • Shevchenko A, Bimbo L, Miroshnyk I, Haarala J, Jelínková K, Syrjänen K, van Veen B, Kiesvaara J, Santos H, Yliruusi J (2012) A new cocrystal and salts of itraconazole: comparison of solid-state properties, stability and dissolution behavior. Int J Pharm 436:403–409

    Article  PubMed  CAS  Google Scholar 

  • Shirsand S, Para M, Nagendrakumar D, Kanani K, Keerthy D (2012) Formulation and evaluation of ketoconazole niosomal gel drug delivery system. Int J Pharm Investig 2:201–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stahl P, Wermuth C (2002) Handbook of pharmaceutical salts: properties, selection and use. Wiley, Weinheim

    Google Scholar 

  • Tiwary A (2001) Modification of crystal habit and its role in dosage form performance. Drug Dev Ind Pharm 27:699–709

    Article  PubMed  CAS  Google Scholar 

  • Tripathi K (2003) Essentials of medical pharmacology. Jaypee, New Delhi

    Google Scholar 

  • Tumanova N, Robeyns K, Candoni N, Veesler S (2014) Solution co crystallization, an effective tool to explore the variety of cocrystal systems: caffeine/dicarboxylic acid cocrystals. CrystEngComm 16:9603–9611

    Article  Google Scholar 

  • World Health Organization (2009) WHO Technical Report Series, No. 953: stability testing of active pharmaceutical ingredients and finished pharmaceutical products

  • Yadav A, Dabke A, Shete A (2010) Crystal engineering to improve physicochemical properties of mefloquine hydrochloride. Drug Dev Ind Pharm 36:1036–1045

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Henry R, Borchardt T, Lou X (2006) Efficient co-crystal screening using solution-mediated phase transformation. J Pharm Sci 96:990–995

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Pune, Maharashtra, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Kamble.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Research involving animal and human rights

The present work doesn’t involved any animal or human volunteers study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamble, R.N., Bothiraja, C., Mehta, P.P. et al. Synthesis, solid state characterization and antifungal activity of ketoconazole cocrystals. J. Pharm. Investig. 48, 541–549 (2018). https://doi.org/10.1007/s40005-017-0346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-017-0346-4

Keywords

Navigation