Skip to main content

Advertisement

Log in

Deep learning: from chemoinformatics to precision medicine

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Deep learning is a new machine learning paradigm that focuses on learning with deep hierarchical models of data. Chemoinformatics has been defined as the mixing of chemical information resources to transform into knowledge for the intended purpose of making better and faster decisions in the area of drug lead identification and optimization. Precision medicine includes disease prevention and treatment strategies that consider individual variability in healthcare. Researchers are now focusing on the convergence of genomics, epigenomics, metabolomics, informatics, and imaging, along with other technologies such as data mining, deep learning, and big data methodology; disciplines that are rapidly expanding the scope of precision medicine. Drug and diagnostic developers, physicians, health systems, and patients share interests in precision medicine. In this review, we provide an overview of recent studies on the application of the deep learning method in the pharmaceuticals and precision medicine fields. We briefly review the fields related to the history of deep learning, chemoinformatics, drug development, model based medicine, electronic healthcare records, wearable sensors, drug response variability, and precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A (2016) Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm 13:2524–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoyama T, Suzuki Y, Ichikawa H (1990) Neural networks applied to quantitative structure–activity relationship analysis. J Med Chem 33:2583–2590

    Article  CAS  PubMed  Google Scholar 

  • Baba H, Takahara J, Yamashita F, Hashida M (2015) Modeling and prediction of solvent effect on human skin permeability using support vector regression and random forest. Pharm Res 32:3604–3617

    Article  CAS  PubMed  Google Scholar 

  • Banaee H, Ahmed MU, Loutfi A (2013) Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges. Sensors 13:17472–17500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown FK (1998) Chemoinformatics: what is it and how does it impact drug discovery. Annu Rep Med Chem 33:375–384

    Article  CAS  Google Scholar 

  • Burns PB, Rohrich RJ, Chung KC (2011) The levels of evidence and their role in evidence-based medicine. Plast Reconstr Surg 128:305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Dutta K, Xie HQ, Byun J, Pottathil A, Moore M (2013) Persuasive and pervasive sensing: a new frontier to monitor, track and assist older adults suffering from Type-2 diabetes. 2013 46th Hawaii international conference on system sciences, pp. 2636–2645

  • Chen C, He M, Zhu Y, Shi L, Wang X (2015) Five critical elements to ensure the precision medicine. Cancer Metastasis Rev 34:313–318

    Article  PubMed  Google Scholar 

  • Clark AM, Dole K, Coulon-Spektor A, Mcnutt A, Grass G, Freundlich JS, Reynolds RC, Ekins S (2015) Open source Bayesian models. 1. Application to ADME/Tox and drug discovery datasets. J Chem Inf Model 55:1231–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372:793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cubitt HE, Yeo KR, Howgate EM, Rostami-Hodjegan A, Barter ZE (2011) Sources of interindividual variability in IVIVE of clearance: an investigation into the prediction of benzodiazepine clearance using a mechanistic population-based pharmacokinetic model. Xenobiotica 41:623–638

    Article  CAS  PubMed  Google Scholar 

  • Dobre C, Xhafa F (2014) Parallel programming paradigms and frameworks in big data era. Int J Parallel Program 42:710–738

    Article  Google Scholar 

  • Domingos P (2012) A few useful things to know about machine learning. Magazine. Commun ACM 55:78–87

    Article  Google Scholar 

  • Ekins S (2006) Systems-ADME/Tox: resources and network approaches. J Pharmacol Toxicol Methods 53:38–66

    Article  CAS  PubMed  Google Scholar 

  • Ekins S, Litterman NK, Lipinski CA, Bunin BA (2016) Thermodynamic proxies to compensate for biases in drug discovery methods. Pharm Res 33:194–205

    Article  CAS  PubMed  Google Scholar 

  • Fagerberg JH, Karlsson E, Ulander J, Hanisch G, Bergstrom CA (2015) Computational prediction of drug solubility in fasted simulated and aspirated human intestinal fluid. Pharm Res 32:578–589

    Article  CAS  PubMed  Google Scholar 

  • Fang Q, Lee SY, Permana H, Ghorbani K, Cosic I (2011) Developing a wireless implantable body sensor network in MICS band. IEEE Trans Inf Technol Biomed 15:567–576

    Article  PubMed  Google Scholar 

  • Freund Y, Schapire R (1999) Large margin classification using the perceptron algorithm. Mach Learn 37:277–296

    Article  Google Scholar 

  • Frey LJ, Lenert L, Lopez-Campos G (2014) EHR big data deep phenotyping. contribution of the IMIA genomic medicine working group. Yearb Med Inf 9:206–211

    Article  CAS  Google Scholar 

  • Fukushima K (1979) Neural network model for a mechanism of pattern recognition unaffected by shift in position—Neocognitron. Trans IECE, J62-A: 658–665

    Google Scholar 

  • Fukushima K (1980) Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36:193–202

    Article  CAS  PubMed  Google Scholar 

  • Fukushima K (2013) Training multi-layered neural network neocognitron. Neural Netw 40:18–31

    Article  PubMed  Google Scholar 

  • Gibney E (2016) Google AI algorithm masters ancient game of Go. Nature 529:445–446

    Article  CAS  PubMed  Google Scholar 

  • Giri D, Acharya UR, Martis RJ, Sree SV, Lim T-C, Ahamed T, Suri JS (2013) Automated diagnosis of coronary artery disease affected patients using LDA, PCA, ICA and discrete wavelet transform. J Knowl-Based Syst 37:274–282

    Article  Google Scholar 

  • Graves A, Mohamed A-R, Hinton G (2013) Speech recognition with deep recurrent neural networks. 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6645–6649

  • Hamanaka M, Taneishi K, Iwata H, Ye J, Pei J, Hou J, Okuno Y (2016) CGBVS–DNN: Prediction of compound–protein Interactions based on deep learning. Mol Inf 36: 1–10

    Google Scholar 

  • Hatanaka T, Yoshida S, Kadhum WR, Todo H, Sugibayashi K (2015) In silico estimation of skin concentration following the dermal exposure to chemicals. Pharm Res 32:3965–3974

    Article  CAS  PubMed  Google Scholar 

  • Hawgood S, Hook-Barnard IG, O’brien TC, Yamamoto KR (2015) Precision medicine: beyond the inflection point. Sci Transl Med 7: 300ps17

    Article  Google Scholar 

  • Hersh WR (2007) Adding value to the electronic health record through secondary use of data for quality assurance, research, and surveillance. Am J Manag Care 13:277–278

    PubMed  Google Scholar 

  • Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313:504–507

    Article  CAS  PubMed  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivakhnenko AG, Lapa VG (1965) Cybernetic predicting devices. CCM Information Corporation.

  • Ivakhnenko AG, Lapa VG, Mcdonough RN (1967) Cybernetics and forecasting techniques. Elsevier, New York

    Google Scholar 

  • Jamei M, Dickinson GL, Rostami-Hodjegan A (2009) A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of ‘bottom-up’ versus ‘top-down’ recognition of covariates. Drug Metab Pharmacokinet 24:53–75

    Article  CAS  PubMed  Google Scholar 

  • Jameson JL, Longo DL (2015) Precision medicine-personalized, problematic, and promising. N Engl J Med 372:2229–2234

    Article  CAS  PubMed  Google Scholar 

  • Jensen PB, Jensen LJ, Brunak S (2012) Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 13:395–405

    Article  CAS  PubMed  Google Scholar 

  • Joseph RD (1961) Contributions to perceptron theory. Ph.D thesis, Cornell University

  • Karlen W, Mattiussi C, Floreano D (2009) Sleep and wake classification with ECG and respiratory effort signals. IEEE Trans Biomed Circuits Syst 3:71–78

    Article  CAS  PubMed  Google Scholar 

  • Kingsley LJ, Wilson GL, Essex ME, Lill MA (2015) Combining structure- and ligand-based approaches to improve site of metabolism prediction in CYP2C9 substrates. Pharm Res 32:986–1001

    Article  CAS  PubMed  Google Scholar 

  • Klon AE, Lowrie JF, Diller DJ (2006) Improved naive Bayesian modeling of numerical data for absorption, distribution, metabolism and excretion (ADME) property prediction. J Chem Inf Model 46:1945–1956

    Article  CAS  PubMed  Google Scholar 

  • Krizhevsky A (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst (NIPS), pp. 1097–1105

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Huang JX, Zeng X, Zhang G (2016) DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions. BMC Med Genom 9(Suppl 2):48

    Article  Google Scholar 

  • Lienard P, Gavartin J, Boccardi G, Meunier M (2015) Predicting drug substances autoxidation. Pharm Res 32:300–310

    Article  CAS  PubMed  Google Scholar 

  • Lucas P (2001) Bayesian networks in medicine: a model-based approach to medical decision making. In: Proceedings of the EUNITE workshop on intelligent systems in patients care, pp. 73–97

  • Lusci A, Pollastri G, Baldi P (2013) Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 53:1563–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure–activity relationships. J Chem Inf Model 55:263–274

    Article  CAS  PubMed  Google Scholar 

  • Miotto R, Li L, Kidd BA, Dudley JT (2016) Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 6:26094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell JB (2014) Machine learning methods in chemoinformatics. Wiley Interdisc Rev Comput Mol Sci 4: 468–481

    Article  CAS  Google Scholar 

  • Nikfarjam A, Sarker A, O’connor K, Ginn R, Gonzalez G (2015) Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inf Assoc 22:671–681

    Google Scholar 

  • Obrezanova O, Csanyi G, Gola JM, Segall MD (2007) Gaussian processes: a method for automatic QSAR modeling of ADME properties. J Chem Inf Model 47:1847–1857

    Article  CAS  PubMed  Google Scholar 

  • Perryman AL, Stratton TP, Ekins S, Freundlich JS (2016) Predicting mouse liver microsomal stability with “pruned” machine learning models and public data. Pharm Res 33:433–449

    Article  CAS  PubMed  Google Scholar 

  • Pillar N, Isakov O, Weissglas-Volkov D, Botchan S, Friedman E, Arber N, Shomron N (2015) Actionable clinical decisions based on comprehensive genomic evaluation in asymptomatic adults. Mol Genet Genom Med 3:433–439

    Article  Google Scholar 

  • Qian N, Sejnowski TJ (1988) Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 202:865–884

    Article  CAS  PubMed  Google Scholar 

  • Rostami-Hodjegan A, Tamai I, Pang KS (2012) Physiologically based pharmacokinetic (PBPK) modeling: it is here to stay! Biopharm Drug Dispos 33:47–50

    Article  CAS  PubMed  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart, DE, McClelland, JL (eds) Parallel distributed processing, vol. 1, MIT Press, Cambridge, pp. 318–362

    Google Scholar 

  • Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS (1996) Evidence based medicine: what it is and what it isn’t. Br Med J 312:71–72

    Article  CAS  Google Scholar 

  • Sathyanarayana A, Joty S, Fernandez-Luque L, Ofli F, Srivastava J, Elmagarmid A, Arora T, Taheri S (2016) Sleep quality prediction from wearable data using deep learning. JMIR Mhealth Uhealth 4: e125

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  PubMed  Google Scholar 

  • Tonelli MR (2011) Integrating clinical research into clinical decision making. Ann Ist Super Sanita 47:26–30

    PubMed  Google Scholar 

  • Tucker CS, Behoora I, Nembhard HB, Lewis M, Sterling NW, Huang X (2015) Machine learning classification of medication adherence in patients with movement disorders using non-wearable sensors. Comput Biol Med 66:120–134

    Article  PubMed  Google Scholar 

  • Viglione S (1970) Applications of pattern recognition technology. In: Mendel JM, Fu KS (eds) Adaptive, learning, and pattern recognition systems. Academic Press, New York, pp. 115–161

    Chapter  Google Scholar 

  • Vu TH (2010) Online discovery of heart rate variability patterns in mobile healthcare services. J Syst Softw 83:1930–1940

    Article  Google Scholar 

  • Wang W, Kim MT, Sedykh A, Zhu H (2015) Developing enhanced blood-brain barrier permeability models: integrating external bio-assay data in qsar modeling. Pharm Res 32:3055–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiskopf NG, Weng C (2013) Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. J Am Med Inf Assoc 20:144–151

    Article  Google Scholar 

  • Weiskopf NG, Hripcsak G, Swaminathan S, Weng C (2013) Defining and measuring completeness of electronic health records for secondary use. J Biomed Inf 46:830–836

    Article  Google Scholar 

  • Xu Y, Dai Z, Chen F, Gao S, Pei J, Lai L (2015) Deep learning for drug-induced liver injury. J Chem Inf Model 55:2085–2093

    Article  CAS  PubMed  Google Scholar 

  • Zawbaa HM, Szlek J, Grosan C, Jachowicz R, Mendyk A (2016) Computational intelligence modeling of the macromolecules release from plga microspheres-focus on feature selection. PLoS ONE 11:e0157610

    Article  PubMed  PubMed Central  Google Scholar 

  • Zenker S, Rubin J, Clermont G (2006) Towards a model-based medicine: integration of probabilistic inference with mechanistic knowledge. J Crit Care 21:350

    Article  Google Scholar 

  • Zenker S, Rubin J, Clermont G (2007) From inverse problems in mathematical physiology to quantitative differential diagnoses. PLoS Comput Biol 3:e204

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Ekins S, Raufman JP, Polli JE (2009) Computational models for drug inhibition of the human apical sodium-dependent bile acid transporter. Mol Pharm 6:1591–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Troyanskaya OG (2015) Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 12:931–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program (2014R1A1A2055734) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education and the Korea Health technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HC15C1045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Mi Oh.

Ethics declarations

Conflict of interest

All authors (I.-W. Kim and J.M. Oh) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, IW., Oh, J.M. Deep learning: from chemoinformatics to precision medicine. Journal of Pharmaceutical Investigation 47, 317–323 (2017). https://doi.org/10.1007/s40005-017-0332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-017-0332-x

Keywords

Navigation