Skip to main content

Advertisement

Log in

An outbreak of skin infections in neonates due to a Staphylococcus aureus strain producing the exfoliative toxin A

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

Staphylococcus aureus is an important cause of infections in hospitalized neonates. Preterm or low birthweight infants are especially at risk to develop a S. aureus infection due to the immaturity of the immune system, length of hospital stay and invasive procedures. Exfoliative toxin (ET)-producing S. aureus is often responsible for neonatal infections, causing clinical manifestations such as staphylococcal scalded skin syndrome, characterized by both localized blisters or generalized exfoliation of the skin.

Methods

We describe an outbreak due to an S. aureus strain producing ETA occurring in a local hospital in Northern Italy. Molecular typing of the isolates included spa typing and multilocus sequence typing. DNA microarray hybridization was also performed on one representative strain.

Results

In the period from July 2013 to February 2014, 12 neonates presented with skin infections, mainly bullae or pustules. Cultures of skin swabs yielded methicillin-susceptible S. aureus (MSSA). By molecular typing, an epidemic strain (t1393/ST5) was identified in nine neonates; microarray analysis and PCR revealed that it contained the ETA encoding gene. Screening of staff, mothers and healthy neonates and environmental cultures did not reveal the presence of the epidemic strain. However, the father of an infected neonate was found to be a carrier of MSSA t1393 five months after the outbreak started.

Conclusion

Implementation of hygiene procedures and sanitization of the ward twice terminated the outbreak. Timely surveillance of infections, supported by molecular typing, is fundamental to prevent similar episodes among neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM, Pantosti A. Worldwide epidemiology and antibiotic resistance of Staphylococcus aureus. Curr Top Microbiol Immunol. 2016. doi:http://dx.doi.org/10.1007/82_2016_3.

  3. Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus toxins: A potential form of anti-virulence therapy. Toxins (Basel). 2016;8:72. doi:http://dx.doi.org/10.3390/toxins8030072.

    Article  Google Scholar 

  4. Gould IM, Girvan EK, Browning RA, MacKenzie FM, Edwards GF. Report of a hospital neonatal unit outbreak of community-associated methicillin-resistant Staphylococcus aureus. Epidemiol Infect. 2009;137:1242–8.

    Article  CAS  PubMed  Google Scholar 

  5. Sanchini A, Spitoni MG, Monaco M, Raglio A, Grigis A, Petro W, et al. Outbreak of skin and soft tissue infections in a hospital newborn nursery in Italy due to community-acquired meticillin-resistant Staphylococcus aureus USA300 clone. J Hosp Infect. 2013;83:36–40.

    Article  CAS  PubMed  Google Scholar 

  6. Layer F, Sanchini A, Strommenger B, Cuny C, Breier AC, Proquitte H, et al. Molecular typing of toxic shock syndrome toxin-1-and Enterotoxin A-producing methicillin-sensitive Staphylococcus aureus isolates from an outbreak in a neonatal intensive care unit. Int J Med Microbiol. 2015;305:790–8.

    Article  PubMed  Google Scholar 

  7. Peacock SJ, Justice A, Griffiths D, de Silva GD, Kantzanou MN, Crook D, et al. Determinants of acquisition and carriage of Staphylococcus aureus in infancy. J Clin Microbiol. 2003;41:5718–25.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5:751–62.

    Article  PubMed  Google Scholar 

  9. Gaynes RP, Edwards JR, Jarvis WR, Culver DH, Tolson JS, Martone WJ. Nosocomial infections among neonates in high-risk nurseries in the United States. National Nosocomial Infections Surveillance System. Pediatrics. 1996;98:357–61.

    CAS  PubMed  Google Scholar 

  10. Healy CM, Palazzi DL, Edwards MS, Campbell JR, Baker CJ. Features of invasive staphylococcal disease in neonates. Pediatrics. 2004;114:953–61.

    Article  PubMed  Google Scholar 

  11. Tuzun Y, Wolf R, Baglam S, Engin B. Diaper (napkin) dermatitis: a fold (intertriginous) dermatosis. Clin Dermatol. 2015;33:477–82.

    Article  PubMed  Google Scholar 

  12. Ladhani S. Recent developments in staphylococcal scalded skin syndrome. Clin Microbiol Infect. 2001;7:301–7.

    Article  CAS  PubMed  Google Scholar 

  13. Ladhani S. Understanding the mechanism of action of the exfoliative toxins of Staphylococcus aureus. FEMS Immunol Med Microbiol. 2003;39:181–9.

    Article  CAS  PubMed  Google Scholar 

  14. Ladhani S, Joannou CL, Lochrie DP, Evans RW, Poston SM. Clinical, microbial, and biochemical aspects of the exfoliative toxins causing staphylococcal scalded-skin syndrome. Clin Microbiol Rev. 1999;12:224–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kapoor V, Travadi J, Braye S. Staphylococcal scalded skin syndrome in an extremely premature neonate: a case report with a brief review of literature. J Paediatr Child Health. 2008;44:374–6.

    Article  PubMed  Google Scholar 

  16. Bukowski M, Wladyka B, Dubin G. Exfoliative toxins of Staphylococcus aureus. Toxins (Basel). 2010;2:1148–65.

    Article  CAS  Google Scholar 

  17. Lamand V, Dauwalder O, Tristan A, Casalegno JS, Meugnier H, Bes M, et al. Epidemiological data of staphylococcal scalded skin syndrome in France from 1997 to 2007 and microbiological characteristics of Staphylococcus aureus associated strains. Clin Microbiol Infect. 2012;18:E514–21.

    Article  CAS  PubMed  Google Scholar 

  18. Nhan TX, Leclercq R, Cattoir V. Prevalence of toxin genes in consecutive clinical isolates of Staphylococcus aureus and clinical impact. Eur J Clin Microbiol Infect Dis. 2011;30:719–25.

    Article  CAS  PubMed  Google Scholar 

  19. Yamasaki O, Yamaguchi T, Sugai M, Chapuis-Cellier C, Arnaud F, Vandenesch F, et al. Clinical manifestations of staphylococcal scalded-skin syndrome depend on serotypes of exfoliative toxins. J Clin Microbiol. 2005;43:1890–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neylon O, O’Connell NH, Slevin B, Powell J, Monahan R, Boyle L, et al. Neonatal staphylococcal scalded skin syndrome: clinical and outbreak containment review. Eur J Pediatr. 2010;169:1503–9.

    Article  PubMed  Google Scholar 

  21. El Helali N, Carbonne A, Naas T, Kerneis S, Fresco O, Giovangrandi Y, et al. Nosocomial outbreak of staphylococcal scalded skin syndrome in neonates: epidemiological investigation and control. J Hosp Infect. 2005;61:130–8.

    Article  PubMed  Google Scholar 

  22. Monaco M, Sanchini A, Grundmann H, Pantosti A. Vancomycin-heteroresistant phenotype in invasive methicillin-resistant Staphylococcus aureus isolates belonging to spa type 041. Eur J Clin Microbiol Infect Dis. 2010;29:771–7.

    Article  CAS  PubMed  Google Scholar 

  23. Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, et al. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun. 2002;70:631–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tinelli M, Monaco M, Vimercati M, Ceraminiello A, Pantosti A. Methicillin-susceptible Staphylococcus aureus in skin and soft tissue infections, Northern Italy. Emerg Infect Dis. 2009;15:250–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Harmsen D, Claus H, Witte W, Rothganger J, Turnwald D, Vogel U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol. 2003;41:5442–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci USA. 2002;99:7687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Monecke S, Slickers P, Ehricht R. Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol Med Microbiol. 2008;53:237–51.

    Article  CAS  PubMed  Google Scholar 

  28. Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS ONE. 2011;6:e17936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roberts AA, Sharma SV, Strankman AW, Duran SR, Rawat M, Hamilton CJ. Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus. Biochem J. 2013;451:69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW. Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med. 2010;7:e1000215.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Perez-Vazquez M, Vindel A, Marcos C, Oteo J, Cuevas O, Trincado P, et al. Spread of invasive Spanish Staphylococcus aureus spa-type t067 associated with a high prevalence of the aminoglycoside-modifying enzyme gene ant(4′)-Ia and the efflux pump genes msrA/msrB. J Antimicrob Chemother. 2009;63:21–31.

    Article  CAS  PubMed  Google Scholar 

  32. Changchien CH, Chen SW, Chen YY, Chu C. Antibiotic susceptibility and genomic variations in Staphylococcus aureus associated with Skin and Soft Tissue Infection (SSTI) disease groups. BMC Infect Dis. 2016;16:276.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Koningstein M, Groen L, Geraats-Peters K, Lutgens S, Rietveld A, et al. The use of typing methods and infection prevention measures to control a bullous impetigo outbreak on a neonatal ward. Antimicrob Resist Infect Control. 2012;1:37.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Paranthaman K, Bentley A, Milne LM, Kearns A, Loader S, Thomas A, et al. Nosocomial outbreak of staphyloccocal scalded skin syndrome in neonates in England, December 2012–March 2013. Euro Surveill. 2014;19:1–7.

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Pantosti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Local Surveillance and Infection Control Committee (CIO) approved the study on September 13, 2013. Informed consent was obtained from parents of infected and non-infected neonates and from medical and non-medical staff. Clinical data and samples (bacterial isolates) were anonymized before being used for the study. Approval by the ethics committee was not required as the study was regarded as part of routine surveillance measures for infection control.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimentel de Araujo, F., Tinelli, M., Battisti, A. et al. An outbreak of skin infections in neonates due to a Staphylococcus aureus strain producing the exfoliative toxin A. Infection 46, 49–54 (2018). https://doi.org/10.1007/s15010-017-1084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-017-1084-2

Keywords

Navigation