Skip to main content
Log in

A one-year prospective study on the antibiotic resistance of E. coli strains isolated in urinary specimens of children hospitalized at the University Pediatric Medical Center in Novi Sad, Serbia

  • Clinical and Epidemiological Study
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

Urinary tract infections (UTIs), the most common serious bacterial infections in children, are frequently caused by Escherichia coli. The purpose of this study was to investigate E. coli resistance/multidrug resistance to antibiotics most frequently used for UTIs.

Methods

Children 0–18 years of age, hospitalized at the University Pediatric Hospital in Novi Sad, Serbia, were included in a 1-year observational prospective study. The microbiological analysis was performed using the standard Kirby–Bauer disk diffusion method. The results were analyzed using WHONET 5.4 software.

Results

E. coli was isolated from 61.7 % of positive urine specimens. In general, higher average E. coli antibiotic resistance was found in infants and toddlers compared to children and adolescents (33.4 vs. 25.0 %) (p < 0.0001). Furthermore, it was observed that the average resistance to all the tested antibiotics was higher in boys than in girls (37.0 vs. 25.1 %) (p < 0.0001). E. coli was highly susceptible to piperacillin/tazobactam (>93.1 %), amikacin (86.3 %), quinolones (>75.0 %), and penems (>96.6 %). The prevalence of multiresistant E. coli strains was significantly higher in infants and toddlers (72.3 vs. 36.8 %) (p < 0.0001).

Conclusions

E. coli, a common cause of UTIs in children admitted to pediatric hospitals, is highly resistant/multidrug-resistant to commonly used antibiotics. Higher average resistance is found in infants and toddlers than in children and adolescents, as well as in boys compared to girls. These findings are important for the regional empiric therapy of UTIs and call for actions to decrease E. coli antibiotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chung A, Perera R, Brueggemann AB, Elamin AE, Harnden A, Mayon-White R, Smith S, Crook DW, Mant D. Effect of antibiotic prescribing on antibiotic resistance in individual children in primary care: prospective cohort study. BMJ. 2007;335:429.

    Article  PubMed  CAS  Google Scholar 

  2. Henderson KL, Muller-Pebody B, Johnson AP, Goossens H, Sharland M; ARPEC Group. First set-up meeting for Antibiotic Resistance and Prescribing in European Children (ARPEC). Euro Surveill. 2009;14(45). pii = 19404.

  3. Lutter SA, Currie ML, Mitz LB, Greenbaum LA. Antibiotic resistance patterns in children hospitalized for urinary tract infections. Arch Pediatr Adolesc Med. 2005;159:924–8.

    Article  PubMed  Google Scholar 

  4. Marcus N, Ashkenazi S, Samra Z, Cohen A, Livni G. Community-acquired Pseudomonas aeruginosa urinary tract infections in children hospitalized in a tertiary center: relative frequency, risk factors, antimicrobial resistance and treatment. Infection. 2008;36:421–6.

    Article  PubMed  CAS  Google Scholar 

  5. Catal F, Bavbek N, Bayrak O, Karabel M, Karabel D, Odemis E, Uz E. Antimicrobial resistance patterns of urinary tract pathogens and rationale for empirical therapy in Turkish children for the years 2000–2006. Int Urol Nephrol. 2009;41:953–7.

    Article  PubMed  Google Scholar 

  6. Yared A, Edwards KM. Reevaluating antibiotic therapy for urinary tract infections in children. Arch Pediatr Adolesc Med. 2005;159:992–3.

    Article  PubMed  Google Scholar 

  7. Winberg J, Andersen HJ, Bergström T, Jacobsson B, Larson H, Lincoln K. Epidemiology of symptomatic urinary tract infection in childhood. Acta Paediatr Scand Suppl. 1974;252:1–20.

    Article  PubMed  Google Scholar 

  8. Hellström A, Hanson E, Hansson S, Hjälmås K, Jodal U. Association between urinary symptoms at 7 years old and previous urinary tract infection. Arch Dis Child. 1991;66:232–4.

    Article  PubMed  Google Scholar 

  9. Kunin CM. Epidemiology and natural history of urinary tract infection in school age children. Pediatr Clin North Am. 1971;18:509–28.

    PubMed  CAS  Google Scholar 

  10. Welch TR, Forbes PA, Drummond KN, Nogrady MB. Recurrent urinary tract infection in girls. Group with lower tract findings and a benign course. Arch Dis Child. 1976;51:114–9.

    Article  PubMed  CAS  Google Scholar 

  11. Ashkenazi S, Even-Tov S, Samra Z, Dinari G. Uropathogens of various childhood populations and their antibiotic susceptibility. Pediatr Infect Dis J. 1991;10:742–6.

    Article  PubMed  CAS  Google Scholar 

  12. Hellerstein S. Urinary tract infections. Old and new concepts. Pediatr Clin North Am. 1995;42:1433–57.

    PubMed  CAS  Google Scholar 

  13. Schlager TA. Urinary tract infections in children younger than 5 years of age: epidemiology, diagnosis, treatment, outcomes and prevention. Paediatr Drugs. 2001;3:219–27.

    Article  PubMed  CAS  Google Scholar 

  14. Ronald A. The etiology of urinary tract infection: traditional and emerging pathogens. Dis Mon. 2003;49:71–82.

    Article  PubMed  Google Scholar 

  15. Quinonez JM. The continuing saga of antimicrobial resistance. Medscape Pediatrics. Medscape Education. 2004. http://www.medscape.org/viewarticle/495300. Accessed 24 Feb 2013.

  16. Green M, Martin JM, Barbadora KA, Beall B, Wald ER. Reemergence of macrolide resistance in pharyngeal isolates of group a streptococci in southwestern Pennsylvania. Antimicrob Agents Chemother. 2004;48:473–6.

    Article  PubMed  CAS  Google Scholar 

  17. FAAIR Scientific Advisory Panel. Policy recommendations. Clin Infect Dis. 2002;34:S76–7.

    Article  Google Scholar 

  18. Zaidi AK, Huskins WC, Thaver D, Bhutta ZA, Abbas Z, Goldmann DA. Hospital-acquired neonatal infections in developing countries. Lancet. 2005;365:1175–88.

    Article  PubMed  Google Scholar 

  19. Livermore DM. Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis. 2003;36:S11–23.

    Article  PubMed  CAS  Google Scholar 

  20. Brinsley KJ, Sinkowitz-Cochran RL, Cardo DM; CDC Campaign to Prevent Antimicrobial Resistance Team. Assessing motivation for physicians to prevent antimicrobial resistance in hospitalized children using the Health Belief Model as a framework. Am J Infect Control. 2005;33:175–81.

    Article  PubMed  Google Scholar 

  21. Yüksel S, Oztürk B, Kavaz A, Ozçakar ZB, Acar B, Güriz H, Aysev D, Ekim M, Yalçinkaya F. Antibiotic resistance of urinary tract pathogens and evaluation of empirical treatment in Turkish children with urinary tract infections. Int J Antimicrob Agents. 2006;28:413–6.

    Article  PubMed  Google Scholar 

  22. Ilić K, Jakovljević E, Skodrić-Trifunović V. Social-economic factors and irrational antibiotic use as reasons for antibiotic resistance of bacteria causing common childhood infections in primary healthcare. Eur J Pediatr. 2012;171:767–77.

    Article  PubMed  Google Scholar 

  23. Levy SB. Antibiotic resistance: consequences of inaction. Clin Infect Dis. 2001;33:S124–9.

    Article  PubMed  CAS  Google Scholar 

  24. Accinelli C, Koskinen WC, Becker JM, Sadowsky MJ. Environmental fate of two sulfonamide antimicrobial agents in soil. J Agric Food Chem. 2007;55:2677–82.

    Article  PubMed  CAS  Google Scholar 

  25. Grigoryan L, Burgerhof JG, Haaijer-Ruskamp FM, Degener JE, Deschepper R, Monnet DL, Di Matteo A, Scicluna EA, Bara AC, Lundborg CS, Birkin J; SAR Group. Is self-medication with antibiotics in Europe driven by prescribed use? J Antimicrob Chemother. 2007;59:152–6.

    Article  PubMed  CAS  Google Scholar 

  26. Cizman M, Beovic B, Krcmery V, Barsic B, Tamm E, Ludwig E, Pelemis M, Karovski K, Grzesiowski P, Gardovska D, Volokha A, Keuleyan E, Stratchounski L, Dumitru C, Titov LP, Usonis V, Dvorák P. Antibiotic policies in Central Eastern Europe. Int J Antimicrob Agents. 2004;24:199–204.

    Article  PubMed  CAS  Google Scholar 

  27. Mandell LA, Peterson LR, Wise R, Hooper D, Low DE, Schaad UB, Klugman KP, Courvalin P. The battle against emerging antibiotic resistance: should fluoroquinolones be used to treat children? Clin Infect Dis. 2002;35:721–7.

    Article  PubMed  CAS  Google Scholar 

  28. Zhanel GG, Wang X, Nichol K, Nikulin A, Wierzbowski AK, Mulvey M, Hoban DJ. Molecular characterisation of Canadian paediatric multidrug-resistant Streptococcus pneumoniae from 1998–2004. Int J Antimicrob Agents. 2006;28:465–71.

    Article  PubMed  CAS  Google Scholar 

  29. Whitney CG, Farley MM, Hadler J, Harrison LH, Lexau C, Reingold A, Lefkowitz L, Cieslak PR, Cetron M, Zell ER, Jorgensen JH, Schuchat A; Active Bacterial Core Surveillance Program of the Emerging Infections Program Network. Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N Engl J Med. 2000;343:1917–24.

    Article  PubMed  CAS  Google Scholar 

  30. Doern GV, Heilmann KP, Huynh HK, Rhomberg PR, Coffman SL, Brueggemann AB. Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in the United States during 1999–2000, including a comparison of resistance rates since 1994–1995. Antimicrob Agents Chemother. 2001;45:1721–9.

    Article  PubMed  CAS  Google Scholar 

  31. Al-Tawfiq JA, Antony A. Antimicrobial resistance of Klebsiella pneumoniae in a Saudi Arabian hospital: results of a 6-year surveillance study, 1998–2003. J Infect Chemother. 2007;13:230–4.

    Article  PubMed  Google Scholar 

  32. Rolston KV. New antimicrobial agents for the treatment of bacterial infections in cancer patients. Hematol Oncol. 2009;27:107–14.

    Article  PubMed  CAS  Google Scholar 

  33. Yao K, Shen X, Yul S, Lu Q, Deng L, Ye Q, Zhang H, Deng Q, Hu Y, Yang Y. Antimicrobial resistance and serotypes of nasopharyngeal strains of Streptococcus pneumoniae in Chinese children with acute respiratory infections. J Int Med Res. 2007;35:253–67.

    Article  PubMed  CAS  Google Scholar 

  34. World Health Organization (WHO). Surveillance standards for antimicrobial resistance (WHO/CDS/CSR/DRS/2001.5). 2002. http://whqlibdoc.who.int/hq/2002/WHO_CDS_CSR_DRS_2001.5.pdf. Accessed 24 Feb 2013.

  35. World Health Organization (WHO). WHO Global Strategy for Containment of Antimicrobial Resistance (WHO/CDS/CSR/DRS/2001.2a). 2001. http://whqlibdoc.who.int/hq/2001/WHO_CDS_CSR_DRS_2001.2a.pdf. Accessed 24 Feb 2013.

  36. O’Brien TF, Stelling JM. WHONET: an information system for monitoring antimicrobial resistance. Emerg Infect Dis. 1995;1:66.

    Article  PubMed  Google Scholar 

  37. Rocha JL, Tuon FF, Johnson JR. Sex, drugs, bugs, and age: rational selection of empirical therapy for outpatient urinary tract infection in an era of extensive antimicrobial resistance. Braz J Infect Dis. 2012;16:115–21.

    Article  PubMed  CAS  Google Scholar 

  38. Johnson JR, Urban C, Weissman SJ, Jorgensen JH, Lewis JS 2nd, Hansen G, Edelstein PH, Robicsek A, Cleary T, Adachi J, Paterson D, Quinn J, Hanson ND, Johnston BD, Clabots C, Kuskowski MA; AMERECUS Investigators. Molecular epidemiological analysis of Escherichia coli sequence type ST131 (O25:H4) and blaCTX-M-15 among extended-spectrum-β-lactamase-producing E. coli from the United States, 2000 to 2009. Antimicrob Agents Chemother. 2012;56:2364–70.

    Article  PubMed  CAS  Google Scholar 

  39. European Medicines Agency (EMA). Note for Guidance on Clinical Investigation of Medicinal Products in the Paediatric Population (CPMP/ICH/2711/99). 2001. http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002926.pdf. Accessed 24 Feb 2013.

  40. Horvat O. Utilization of antibiotics in outhospital conditions in South-Backa district. Dissertation, School of Medicine, University of Novi Sad, Serbia; 2010.

  41. English M, Mohammed S, Ross A, Ndirangu S, Kokwaro G, Shann F, Marsh K. A randomised, controlled trial of once daily and multi-dose daily gentamicin in young Kenyan infants. Arch Dis Child. 2004;89:665–9.

    Article  PubMed  CAS  Google Scholar 

  42. Hey E. Unlicensed and off label drug use in neonates. Arch Dis Child Fetal Neonatal Ed. 2000;82:F77–8.

    Article  PubMed  CAS  Google Scholar 

  43. Meier S, Weber R, Zbinden R, Ruef C, Hasse B. Extended-spectrum β-lactamase-producing Gram-negative pathogens in community-acquired urinary tract infections: an increasing challenge for antimicrobial therapy. Infection. 2011;39:333–40.

    Article  PubMed  CAS  Google Scholar 

  44. Elder JS. Urinary tract infections. In: Behrman RE, Kliegman RM, Jenson HB, editors. Nelson textbook of pediatrics. 16th ed. Philadelphia: WB Saunders Company; 2000. p. 1621–5.

    Google Scholar 

  45. Sharland M; SACAR Paediatric Subgroup. The use of antibacterials in children: a report of the Specialist Advisory Committee on Antimicrobial Resistance (SACAR) Paediatric Subgroup. J Antimicrob Chemother. 2007;60:i15–26.

    Article  PubMed  CAS  Google Scholar 

  46. Bartoloni A, Pallecchi L, Benedetti M, Fernandez C, Vallejos Y, Guzman E, Villagran AL, Mantella A, Lucchetti C, Bartalesi F, Strohmeyer M, Bechini A, Gamboa H, Rodríguez H, Falkenberg T, Kronvall G, Gotuzzo E, Paradisi F, Rossolini GM. Multidrug-resistant commensal Escherichia coli in children, Peru and Bolivia. Emerg Infect Dis. 2006;12:907–13.

    Article  PubMed  Google Scholar 

  47. International Monetary Fund. Tensions from the Two-Speed Recovery; Unemployment, Commodities, and Capital Flows. 2011. http://www.imf.org/external/pubs/ft/weo/2011/01/pdf/text.pdf. Accessed 24 Feb 2013.

  48. Stefan-Mikić S. Antibiotic utilisation surveillance from pharmacoeconomic/pharmacotherapeutic standpoint with control of bacterial resistance. Med Pregl. 2008;61:7–8.

    PubMed  Google Scholar 

  49. Tseng SH, Lee CM, Lin TY, Chang SC, Chang FY. Emergence and spread of multi-drug resistant organisms: think globally and act locally. J Microbiol Immunol Infect. 2011;44:157–65.

    Article  PubMed  Google Scholar 

  50. Doyle E. CDC: act locally, participate regionally, to combat antimicrobial resistance. Today’s Hospitalist. 2006. http://www.todayshospitalist.com/index.php?b=articles_read&cnt=73. Accessed 24 Feb 2013.

Download references

Acknowledgments

Katarina Ilić’s work is supported by the Ministry of Education and Science, Republic of Serbia, Project No. 175064, 2011-2014. Part of the data collected within the first 5 months of the study were presented orally at the 16th World Congress of Basic and Clinical Pharmacology (Copenhagen, Denmark, 17–23 July 2010) and published in an abstract form in Basic and Clinical Pharmacology and Toxicology 2010; 107(Suppl 1), p. 135. The 12-month data were presented in a poster session of the 2011 Annual Meeting of the American Society for Clinical Pharmacology and Therapeutics (Dallas, Texas, USA, 2–5 March 2011) and published in an abstract form in Clinical Pharmacology and Therapeutics 2011; 89(Suppl 1), p. S64.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ilić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakovljević, E., Ilić, K., Jelesić, Z. et al. A one-year prospective study on the antibiotic resistance of E. coli strains isolated in urinary specimens of children hospitalized at the University Pediatric Medical Center in Novi Sad, Serbia. Infection 41, 1111–1119 (2013). https://doi.org/10.1007/s15010-013-0493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-013-0493-0

Keywords

Navigation