Skip to main content

Advertisement

Log in

Polymorphisms in toll-like receptors 2, 4 and 5 are associated with Legionella pneumophila infection

  • Clinical and Epidemiological Study
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether single-nucleotide polymorphisms (SNPs) in toll-like receptors (TLR) 2, 4 and 5 affect the susceptibility of Legionella pneumophila infection in a Han Chinese population by in vitro assay.

Methods

Fifty-four (n = 54) healthy subjects were genotyped for SNPs (TLR2 (C597T) [rs3804099], TLR4 (G2244A), TLR4 (A2299G) [AF177765] and TLR5 (C1174T) [rs5744168]). Peripheral blood mononuclear cells (PBMCs) were obtained from these subjects and stimulated with live L. pneumophila for 24 h. The mRNA expression levels of adapter protein myeloid differentiation factor 88 (MyD88) were determined using real-time reverse transcription polymerase chain reaction (RT-PCR) and the expression levels of TNF-α, IL-1β and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA).

Results

After 24 h of L. pneumophila stimulation, the mRNA expression level of MyD88 was significantly lower with TLR2 (C597T) CT/TT (p = 0.0482) or TLR5 (C1174T) CC homozygotes (p = 0.0223) in comparison to PBMCs with other genotypes. The mRNA expression level of MyD88 was significantly higher with TLR4 (G2244A) GG/GA than AA homozygotes (p = 0.0352). No significant difference was found in PBMCs with genotypes TLR4 (A2299G) AA, AG or GG (p > 0.05). Supernatant from cultures of PBMCs with genotype TLR2 (C597T) CT/TT or TLR5 (C1174T) CC were found to have higher levels of TNF-α, IL-1β and IL-6 after L. pneumophila stimulation. TLR4 (G2244A) GG/GA alleles were found to have lower levels of TNF-α (p = 0.0367) and higher levels of IL-6 (p = 0.0317) in comparison to cells with AA alleles. No significant association was observed between the TNF-α, IL-1β and IL-6 levels and genotype TLR4 (A2299G) after L. pneumophila stimulation (p > 0.05).

Conclusion

Our findings suggested that healthy subjects who were positive for the TLR2 (C597T) CT/TT and TLR5 (C1174T) CC alleles had a superior innate immune response to L. pneumophila than other genotypes in the evaluated Han Chinese population, whereas no association was found for the TLR4 (A2299G) [AF177765] polymorphism with L. pneumophila susceptibility. It is not clear from our study if TLR4 (G2244A) [AF177765] is associated with susceptibility to L. pneumophila infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Diederen BM. Legionella spp. and Legionnaires’ disease. J Infect. 2008;56:1–12.

    Article  PubMed  CAS  Google Scholar 

  2. Fields BS. The molecular ecology of legionellae. Trends Microbiol. 1996;4:286–90.

    Article  PubMed  CAS  Google Scholar 

  3. Horwitz MA, Silverstein SC. Legionnaires’ disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J Clin Invest. 1980;66:441–50.

    Article  PubMed  CAS  Google Scholar 

  4. Garza-González E, Bosques-Padilla FJ, El-Omar E, Hold G, Tijerina-Menchaca R, Maldonado-Garza HJ, Pérez-Pérez GI. Role of the polymorphic IL-1B, IL-1RN and TNF-A genes in distal gastric cancer in Mexico. Int J Cancer. 2005;114:237–41.

    Article  PubMed  Google Scholar 

  5. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–7.

    Article  PubMed  CAS  Google Scholar 

  6. Leulier F, Lemaitre B. Toll-like receptors—taking an evolutionary approach. Nat Rev Genet. 2008;9:165–78.

    Article  PubMed  CAS  Google Scholar 

  7. Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol. 2000;165:5392–6.

    PubMed  CAS  Google Scholar 

  8. Feng CG, Scanga CA, Collazo-Custodio CM, Cheever AW, Hieny S, Caspar P, Sher A. Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll-like receptor 2 (TLR2)- and TLR4-deficient animals. J Immunol. 2003;171:4758–64.

    PubMed  CAS  Google Scholar 

  9. Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    Article  PubMed  CAS  Google Scholar 

  10. Schröder NW, Schumann RR. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis. 2005;5:156–64.

    PubMed  Google Scholar 

  11. Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, Skerrett SJ, Beutler B, Schroeder L, Nachman A, Ozinsky A, Smith KD, Aderem A. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to Legionnaires’ disease. J Exp Med. 2003;198:1563–72.

    Article  PubMed  CAS  Google Scholar 

  12. Hawn TR, Verbon A, Janer M, Zhao LP, Beutler B, Aderem A. Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires’ disease. Proc Natl Acad Sci USA. 2005;102:2487–9.

    Article  PubMed  CAS  Google Scholar 

  13. Hill AV. The genomics and genetics of human infectious disease susceptibility. Annu Rev Genomics Hum Genet. 2001;2:373–400.

    Article  PubMed  CAS  Google Scholar 

  14. Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA. A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun. 2000;68:6398–401.

    Article  PubMed  CAS  Google Scholar 

  15. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511.

    Article  PubMed  CAS  Google Scholar 

  16. Erridge C, Pridmore A, Eley A, Stewart J, Poxton IR. Lipopolysaccharides of Bacteroides fragilis, Chlamydia trachomatis and Pseudomonas aeruginosa signal via toll-like receptor 2. J Med Microbiol. 2004;53:735–40.

    Article  PubMed  CAS  Google Scholar 

  17. Kang TJ, Chae GT. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol. 2001;31:53–8.

    Article  PubMed  CAS  Google Scholar 

  18. Eder W, Klimecki W, Yu L, von Mutius E, Riedler J, Braun-Fahrländer C, Nowak D, Martinez FD; ALEX Study Team. Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol. 2004;113:482–8.

    Article  PubMed  CAS  Google Scholar 

  19. Kutukculer N, Yeniay BS, Aksu G, Berdeli A. Arg753Gln polymorphism of the human toll-like receptor-2 gene in children with recurrent febrile infections. Biochem Genet. 2007;45:507–14.

    Article  PubMed  CAS  Google Scholar 

  20. Cheng PL, Eng HL, Chou MH, You HL, Lin TM. Genetic polymorphisms of viral Infection-associated Toll-like receptors in Chinese population. Transl Res. 2007;150:311–8.

    Article  PubMed  CAS  Google Scholar 

  21. Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA. A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun. 2000;68:6398–401.

    Article  PubMed  CAS  Google Scholar 

  22. Haga H, Yamada R, Ohnishi Y, Nakamura Y, Tanaka T. Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190,562 genetic variations in the human genome. Single-nucleotide polymorphism. J Hum Genet. 2002;47:605–10.

    Article  PubMed  CAS  Google Scholar 

  23. Fuse ET, Tateda K, Kikuchi Y, Matsumoto T, Gondaira F, Azuma A, Kudoh S, Standiford TJ, Yamaguchi K. Role of Toll-like receptor 2 in recognition of Legionella pneumophila in a murine pneumonia model. J Med Microbiol. 2007;56:305–12.

    Article  PubMed  CAS  Google Scholar 

  24. Girard R, Pedron T, Uematsu S, Balloy V, Chignard M, Akira S, Chaby R. Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J Cell Sci. 2003;116:293–302.

    Article  PubMed  CAS  Google Scholar 

  25. Brandenburg K, Mayer H, Koch MH, Weckesser J, Rietschel ET, Seydel U. Influence of the supramolecular structure of free lipid A on its biological activity. Eur J Biochem. 1993;218:555–63.

    Article  PubMed  CAS  Google Scholar 

  26. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410:1099–103.

    Article  PubMed  CAS  Google Scholar 

  27. Barton GM, Medzhitov R. Toll-like receptor signaling pathways. Science. 2003;300:1524–5.

    Article  PubMed  CAS  Google Scholar 

  28. Kiechl S, Wiedermann CJ, Willeit J. Toll-like receptor 4 and atherogenesis. Ann Med. 2003;35:164–71.

    Article  PubMed  CAS  Google Scholar 

  29. Mockenhaupt FP, Cramer JP, Hamann L, Stegemann MS, Eckert J, Oh NR, Otchwemah RN, Dietz E, Ehrhardt S, Schröder NW, Bienzle U, Schumann RR. Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. J Commun Dis. 2006;38:230–45.

    PubMed  CAS  Google Scholar 

  30. Hold GL, Rabkin CS, Chow WH, Smith MG, Gammon MD, Risch HA, Vaughan TL, McColl KE, Lissowska J, Zatonski W, Schoenberg JB, Blot WJ, Mowat NA, Fraumeni JF Jr, El-Omar EM. A functional polymorphism of toll-like receptor 4 gene increases risk of gastric carcinoma and its precursors. Gastroenterology. 2007;132:905–12.

    Article  PubMed  CAS  Google Scholar 

  31. Faber J, Henninger N, Finn A, Zenz W, Zepp F, Knuf M. A toll-like receptor 4 variant is associated with fatal outcome in children with invasive meningococcal disease. Acta Paediatr. 2009;98:548–52.

    Article  PubMed  CAS  Google Scholar 

  32. Yuan FF, Marks K, Wong M, Watson S, de Leon E, McIntyre PB, Sullivan JS. Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol. 2008;86:268–70.

    Article  PubMed  CAS  Google Scholar 

  33. Cheng PL, Eng HL, Chou MH, You HL, Lin TM. Genetic polymorphisms of viral infection-associated Toll-like receptors in Chinese population. Transl Res. 2007;150:311–8.

    Article  PubMed  CAS  Google Scholar 

  34. Feng K, Zhou GQ, Zhai Y, Zhu PF, Wang ZG, He FC, Jiang JX. Study on single nucleotide polymorphism of TLR4 in Chinese population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005;22:99–101.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (30872154).

Conflict of interest

  None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-P. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Gao, XD., Wu, WW. et al. Polymorphisms in toll-like receptors 2, 4 and 5 are associated with Legionella pneumophila infection. Infection 41, 941–948 (2013). https://doi.org/10.1007/s15010-013-0444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-013-0444-9

Keywords

Navigation