Skip to main content
Log in

Novel insights into the role of immune cells in skin and inducible skin-associated lymphoid tissue (iSALT)

  • Übersicht
  • Published:
Allergo Journal Aims and scope Submit manuscript

Summary

The skin is equipped with serial barriers that provide rapid and efficient protection against external intruders. Beneath the epidermal physical barriers of the stratum corneum and the tight junctions, the integrated immune systems in both the epidermis and the dermis act in a coordinated manner to protect the host. This „immunological“ barrier is composed of various cells, including skin-resident cells, such as keratinocytes, dendritic cells, tissue-resident macrophages, resident memory T cells, mast cells, and innate lymphoid cells. Additionally, infiltrating memory T cells, monocytes, neutrophils, basophils, and eosinophils are recruited in support of the host immunity.

In addition to discussing the role of each of these cellular populations, we describe the concept of skin associated lymphoid tissue (SALT), which reminds us that the skin is an important component of the lymphatic system. We further describe the newly discovered phenomenon of multiple cell gathering under skin inflammation, which can be referred to as inducible SALT (iSALT). iSALT contributes to our understanding of SALT by highlighting the importance of direct cell-cell interaction in skin immunity.

Cite this as Ono S, Kabashima K. Novel insights into the role of immune cells in skin and inducible skin-associated lymphoid tissue (iSALT). Allergo J Int 2015;24:170–9 DOI: 10.1007/s40629-015-0065-1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Atopic dermatitis

Ags:

Antigens

AMPs:

Anti-microbial peptides

APs:

Antigen presenting cells

ASC:

Apoptosis-associated speck like protein containing a caspase recruitment domain

ATP:

Adenosine triphosphate

CCL5:

Chemokine C-C motif ligand 5

CHS:

Contact hypersensitivity

CXCL2:

Chemokine C-X-C motif ligand 2

CX3CR1:

C-X3-C chemokine receptor 1

CXCR2:

Chemokine C-X-C motif receptor 2

DAMPs:

Damage-associated molecular patterns

cDCs:

Dermal conventional DCs

dDCs:

Dermal DCs

DCs:

Dendritic cells

dLNs:

Draining lymph nodes

DN:

Double negative

dSEARCH:

Dendrite surveillance extension and retraction cycling habitude

DTA:

Diphtheria toxin subunit A

DTR:

Diphtheria toxin receptor

HMGB1:

High-mobility group box protein 1

HSV-2:

Herpes simplex virus

IFN:

Interferon

IL:

Interleukin

ILCs:

Innate lymphoid cells

iSALT:

Inducible SALT

KCs:

Keratinocytes

LCs:

Langerhans cells

LPS:

Lipopolysaccharide

M1:

Classically activated macrophage

M2:

Alternatively activated macrophage

MALT:

Mucosa-associated lymphoid tissue

Mgl2:

Macrophage galactose C-type lectin type 2

MHC:

Major histocompatibility complex

MLCs:

Memory lymphocyte clusters

NLR:

Nucleotide-binding domain and leucine-rich repeat containing family

PAMPs:

Pathogen-associated molecular patterns

pDCs:

Plasmacytoid dendritic cells

PRRs:

Pattern recognition receptors

SALT:

Skin associated lymphoid tissue

SC:

Stratum corneum

Th:

T helper

TJs:

Tight junctions

TLRs:

Toll-like receptors

TNF:

Tumor necrosis factor

TSLP:

Thymic stromal lymphopoietin

XCR1:

XC-chemokine receptor 1

References

  1. Kabashima K. New concept of the pathogenesis of atopic dermatitis: interplay among the barrier, allergy, and pruritus as a trinity. J Dermatol Sci 2013;70:3–11

    Article  PubMed  Google Scholar 

  2. Streilein JW. Skin-associated lymphoid tissues (SALT): origins and functions. J Invest Dermatol 1983; 80 Suppl: 12s–16s

    Article  PubMed  Google Scholar 

  3. Natsuaki Y, Egawa G, Nakamizo S, Ono S, Hanakawa S, Okada T, et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat Immunol 2014;15:1064–1069

    Article  CAS  PubMed  Google Scholar 

  4. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol 2009;9:679–691

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Lebre MC, van der Aar AM, van Baarsen L, van Capel TM, Schuitemaker JH, Kapsenberg ML, et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol 2007;127:331–341

    Article  CAS  PubMed  Google Scholar 

  6. Begon E, Michel L, Flageul B, Beaudoin I, Jean-Louis F, Bachelez H, et al. Expression, subcellular localization and cytokinic modulation of Toll-like receptors (TLRs) in normal human keratinocytes: TLR2 up-regulation in psoriatic skin. Eur J Dermatol 2007;17:497–506

    CAS  PubMed  Google Scholar 

  7. Selleri S, Arnaboldi F, Palazzo M, Gariboldi S, Zanobbio L, Opizzi E, et al. Toll-like receptor agonists regulate beta-defensin 2 release in hair follicle. Br J Dermatol 2007;156:1172–1177

    Article  CAS  PubMed  Google Scholar 

  8. Muller-Anstett MA, Muller P, Albrecht T, Nega M, Wagener J, Gao Q, et al. Staphylococcal peptidoglycan co-localizes with Nod2 and TLR2 and activates innate immune response via both receptors in primary murine keratinocytes. PLoS One 2010;5:e13153

    Article  CAS  Google Scholar 

  9. Sugita K, Kabashima K, Atarashi K, Shimauchi T, Kobayashi M, Tokura Y. Innate immunity mediated by epidermal keratinocytes promotes acquired immunity involving Langerhans cells and T cells in the skin. Clin ExpImmunol 2007;147:176–183

    CAS  Google Scholar 

  10. Miller LS, Modlin RL. Human keratinocyte Toll-like receptors promote distinct immune responses. J Invest Dermatol 2007;127:262–263

    Article  CAS  PubMed  Google Scholar 

  11. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 2002;3:673–680

    Article  CAS  PubMed  Google Scholar 

  12. Hirsiger S, Simmen HP, Werner CM, Wanner GA, Rittirsch D. Danger signals activating the immune response after trauma. Mediators Inflamm 2012; 2012: 315941

    Google Scholar 

  13. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol 2009;27:229–265

    Article  CAS  PubMed  Google Scholar 

  14. Fukata M, Vamadevan AS, Abreu MT. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol 2009;21:242–253

    Article  CAS  PubMed  Google Scholar 

  15. Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer HD. The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol 2007;17:1140–1145

    Article  CAS  PubMed  Google Scholar 

  16. Burrell HE, Wlodarski B, Foster BJ, Buckley KA, Sharpe GR, Quayle JM, et al. Human keratinocytes release ATP and utilize three mechanisms for nucleotide interconversion at the cell surface. J Biol Chem 2005;280:29667–29676

    Article  CAS  PubMed  Google Scholar 

  17. Nakajima S, Watanabe H, Tohyama M, Sugita K, Iijima M, Hashimoto K, et al. High-mobility group box 1 protein (HMGB1) as a novel diagnostic tool for toxic epidermal necrolysis and Stevens-Johnson syndrome. Arch Dermatol 2011;147:1110–1112

    Article  PubMed  Google Scholar 

  18. Mattii M, Ayala F, Balato N, Filotico R, Lembo S, Schiattarella M, et al. The balance between pro- and anti-inflammatory cytokines is crucial in human allergic contact dermatitis pathogenesis: the role of IL-1 family members. Exp Dermatol 2013;22:813–819

    Article  CAS  PubMed  Google Scholar 

  19. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 recep-tor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005;23:479–490

    Article  CAS  PubMed  Google Scholar 

  20. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006;203:2271–2279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Harder J, Bartels J, Christophers E, Schroder JM. A peptide antibiotic from human skin. Nature 1997;387:861

    Article  CAS  PubMed  Google Scholar 

  22. Henseler T, Christophers E. Disease concomitance in psoriasis. J Am Acad Dermatol 1995;32:982–986

    Article  CAS  PubMed  Google Scholar 

  23. de Jongh GJ, Zeeuwen PL, Kucharekova M, Pfundt R, van der Valk PG, Blokx W, et al. High expression levels of keratinocyte antimicrobial proteins in psoriasis compared with atopic dermatitis. J Invest Dermatol 2005;125:1163–1173

    Article  PubMed  Google Scholar 

  24. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 2002;347:1151–1160

    Article  CAS  PubMed  Google Scholar 

  25. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 2007;449:564–569

    Article  CAS  PubMed  Google Scholar 

  26. Valladeau J, Saeland S. Cutaneous dendritic cells. Semin Immunol 2005; 17: 273–283

    Article  CAS  PubMed  Google Scholar 

  27. Hunger RE, Sieling PA, Ochoa MT, Sugaya M, Burdick AE, Rea TH, et al. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J Clin Invest 2004;113:701–708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Nishibu A, Ward BR, Jester JV, Ploegh HL, Boes M, Takashima A. Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli. J Invest Dermatol 2006;126:787–796

    Article  CAS  PubMed  Google Scholar 

  29. Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med 2009;206:2937–2946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Nakajima S, Igyarto BZ, Honda T, Egawa G, Otsuka A, Hara-Chikuma M, et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol 2012;129:1048–1055 e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaplan DH, Kissenpfennig A, Clausen BE. Insights into Langerhans cell function from Langerhans cell ablation models. Eur J Immunol 2008;38:2369–2376

    Article  CAS  PubMed  Google Scholar 

  32. Igyarto BZ, Jenison MC, Dudda JC, Roers A, Muller W, Koni PA, et al. Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and langerhans cell-derived IL-10. J Immunol 2009;183:5085–5093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Yoshiki R, Kabashima K, Sugita K, Atarashi K, Shimauchi T, Tokura Y. IL-10-producing Langerhans cells and regulatory T cells are responsible for depressed contact hypersensitivity in grafted skin. J Invest Dermatol 2009;129:705–713

    Article  CAS  PubMed  Google Scholar 

  34. Gomez de Aguero M, Vocanson M, Hacini-Rachinel F, Taillardet M, Sparwasser T, Kissenpfennig A, et al. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating Foxp3(+) regulatory T cells. J Clin Invest 2012;122:1700–1711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Bennett CL, van Rijn E, Jung S, Inaba K, Steinman RM, Kapsenberg ML, et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 2005;169:569–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Noordegraaf M, Flacher V, Stoitzner P, Clausen BE. Functional redundancy of Langerhans cells and Langerin+ dermal dendritic cells in contact hypersensitivity. J Invest Dermatol 2010;130:2752–2759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Kuipers H, Schnorfeil FM, Fehling HJ, Bartels H, Brocker T. Dicer-dependent microRNAs control maturation, function, and maintenance of Langerhans cells in vivo. J Immunol 2010;185:400–409

    Article  CAS  PubMed  Google Scholar 

  38. ahner SP, Kel JM, Martina CA, Brouwers-Haspels I, van Roon MA, Clausen BE. Conditional deletion of TGF-betaR1 using Langerin-Cre mice results in Langerhans cell deficiency and reduced contact hypersensitivity. J Immunol 2011;187:5069–5076

    Article  CAS  Google Scholar 

  39. Kel JM, Girard-Madoux MJ, Reizis B, Clausen BE. TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol 2010;185:3248–3255

    Article  CAS  PubMed  Google Scholar 

  40. Romani N, Clausen BE, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev 2010;234:120–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kautz-Neu K, Noordegraaf M, Dinges S, Bennett CL, John D, Clausen BE, et al. Langerhans cells are negative regulators of the anti-Leishmania response. J Exp Med 2011;208:885–891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Shklovskaya E, O’Sullivan BJ, Ng LG, Roediger B, Thomas R, Weninger W, et al. Langerhans cells are precommitted to immune tolerance induction. Proc Natl Acad Sci U S A 2011;108:18049–18054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Ritter U, Meissner A, Scheidig C, Korner H. CD8 alpha- and Langerin-negative dendritic cells, but not Langerhans cells, act as principal antigen-presenting cells in leishmaniasis. Eur J Immunol 2004;34:1542–1550

    Article  CAS  PubMed  Google Scholar 

  44. Igyarto BZ, Haley K, Ortner D, Bobr A, Gerami-Nejad M, Edelson BT, et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 2011;35:260–272

    Article  CAS  PubMed  Google Scholar 

  45. Kashem SW, Igyarto BZ, Gerami-Nejad M, Kumamoto Y, Mohammed J, Jarrett E, et al. Candida albicans Morphology and Dendritic Cell Subsets Determine T Helper Cell Differentiation. Immunity 2015;42:356–366

    Article  CAS  PubMed  Google Scholar 

  46. Malissen B, Tamoutounour S, Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol 2014;14:417–428

    Article  CAS  PubMed  Google Scholar 

  47. Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M, de Bovis B, et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med 2010;207:189–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C, et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 2013;39:925–938

    Article  CAS  PubMed  Google Scholar 

  49. Poulin LF, Henri S, de Bovis B, Devilard E, Kissenpfennig A, Malissen B. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med 2007;204:3119–3131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, Hashimoto D, et al. The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med 2009;206:3115–3130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Shklovskaya E, Roediger B, Fazekas de St Groth B. Epidermal and dermal dendritic cells display differential activation and migratory behavior while sharing the ability to stimulate CD4(+) T cell proliferation in vivo. J Immunol 2008;181:418–430

    Article  CAS  PubMed  Google Scholar 

  52. Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. CD301b(+) dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 2013;39:733–743

    Article  CAS  PubMed  Google Scholar 

  53. Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, et al. Cross-presentation of viral and self antigens by skin-derived CD103(+) dendritic cells. Nat Immunol 2009;10:488–495

    Article  CAS  PubMed  Google Scholar 

  54. Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M, de Bovis B, et al. CD207(+) CD103(+) dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells (vol 207, pg 189, 2010). J Exp Med 2010;207:445–445

    Article  Google Scholar 

  55. Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, et al. Identification of a novel population of Langerin(+) dendritic cells. J Exp Med 2007;204:3147–3156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Honda T, Nakajima S, Egawa G, Ogasawara K, Malissen B, Miyachi Y, et al. Compensatory role of Langerhans cells and langerin-positive dermal dendritic cells in the sensitization phase of murine contact hypersensitivity. J Allergy Clin Immunol 2010;125:1154–1156 e2

    Article  PubMed  Google Scholar 

  57. Murakami R, Denda-Nagai K, Hashimoto S, Nagai S, Hattori M, Irimura T. A Unique Dermal Dendritic Cell Subset That Skews the Immune Re-sponse toward Th2. PLoS One 2013;8:e73270.

    Article  CAS  Google Scholar 

  58. Oyoshi MK, Larson RP, Ziegler SF, Geha RS. Mechanical injury polaizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression. J Allergy Clin Immunol 2010;126:976–984, 984 e1–5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med 2005;202:1213–1223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 2009;129:1339–1350

    Article  CAS  PubMed  Google Scholar 

  61. Krueger GG, Langley RG, Leonardi C, Yeilding N, Guzzo C, Wang Y, et al. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med 2007;356:580–592

    Article  CAS  PubMed  Google Scholar 

  62. Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 2008;371:1665–1674

    Article  CAS  PubMed  Google Scholar 

  63. Zaba LC, Cardinale I, Gilleaudeau P, Sullivan-Whalen M, Suarez-Farinas M, Fuentes-Duculan J, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med 2007;204:3183–3194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Wohn C, Ober-Blobaum JL, Haak S, Pantelyushin S, Cheong C, Zahner SP, et al. Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc Natl Acad Sci U S A 2013;110:10723–10728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Yoshiki R, Kabashima K, Honda T, Nakamizo S, Sawada Y, Sugita K, et al. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-producing gammadelta T cells. J Invest Dermatol 2014;134:1912–1921

    Article  CAS  PubMed  Google Scholar 

  66. Glitzner E, Korosec A, Brunner PM, Drobits B, Amberg N, Schonthaler HB, et al. Specific roles for dendritic cell subsets during initiation and progression of psoriasis. EMBO Mol Med 2014; 6: 1312–1327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Tortola L, Rosenwald E, Abel B, Blumberg H, Schafer M, Coyle AJ, et al. Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J Clin Invest 2012;122:3965–3976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol 2005;23:901–944

    Article  CAS  PubMed  Google Scholar 

  69. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001;2:675–680

    Article  CAS  PubMed  Google Scholar 

  70. Inohara N, Nunez G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 2003;3:371–382

    Article  CAS  PubMed  Google Scholar 

  71. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3: 23–35

    Article  CAS  PubMed  Google Scholar 

  72. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012;122:787–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Martinez FO, Helming L, Gordon S. Alternative Activation of Macrophages: An Immunologic Functional Perspective. Ann Rev of Immunol 2009;27:451–483

    Article  CAS  Google Scholar 

  74. Kreider T, Anthony RM, Urban JF, Gause WC. Alternatively activated macrophages in helminth infections. Curr Opin Immunol 2007;19:448–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011;11:723–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989;74:2527–2534

    CAS  PubMed  Google Scholar 

  77. Egawa M, Mukai K, Yoshikawa S, Iki M, Mukaida N, Kawano Y, et al. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophil-derived interleukin-4. Immunity 2013;38:570–580

    Article  CAS  PubMed  Google Scholar 

  78. Gordon EJ, Rao S, Pollard JW, Nutt SL, Lang RA, Harvey NL. Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development 2010;137:3899–3910

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Abtin A, Jain R, Mitchell AJ, Roediger B, Brzoska AJ, Tikoo S, et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat Immunol 2014;15:45–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Egawa G, Kabashima K. Skin as a Peripheral Lymphoid Organ: Revisiting the Concept of Skin-Associated Lymphoid Tissues. J Invest Dermatol 2011;131:2178–2185

    Article  CAS  PubMed  Google Scholar 

  81. Clark RA. Skin-resident T cells: the ups and downs of on site immunity. J Invest Dermatol 2010;130:362–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol 2004;4:211–222

    Article  CAS  PubMed  Google Scholar 

  83. Honda T, Egawa G, Grabbe S, Kabashima K. Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol 2013; 133: 303–315

    Article  CAS  PubMed  Google Scholar 

  84. Kim BS, Wojno ED, Artis D. Innate lymphoid cells and allergic inflammation. Curr Opin Immunol 2013;25:738–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Kurebayashi Y, Nagai S, Ikejiri A, Koyasu S. Recent advances in understanding the molecular mechanisms of the development and function of Th17 cells. Genes Cells 2013;18:247–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Xing L, Dai Z, Jabbari A, Cerise JE, Higgins CA, Gong W, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med 2014;20: 1043–1049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Shiohara T. Fixed drug eruption: pathogenesis and diagnostic tests. Curr Opin Allergy Clin Immunol 2009;9:316–321

    Article  PubMed  Google Scholar 

  88. Nomura T, Kabashima K, Miyachi Y. The panoply of alpha beta T cells in the skin. J Dermatol Sci 2014;76:3–9

    Article  CAS  PubMed  Google Scholar 

  89. Mueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T Cell Subsets, Migration Patterns, and Tissue Residence. Ann Rev Immunol Vol 31 2013; 31: 137–161

    Article  CAS  Google Scholar 

  90. Schenkel JM, Masopust D. Tissue-Resident Memory T Cells. Immunity 2014;41:886–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brandtzaeg P, Pabst R. Let’s go mucosal: communication on slippery ground. Trends Immunol 2004;25:57–577

    Article  CAS  Google Scholar 

  92. Toews GB, Bergstresser PR, Streilein JW. Langerhans cells: sentinels of skin associated lymphoid tissue. J Invest Dermatol 1980;75:78–82

    Article  CAS  PubMed  Google Scholar 

  93. Rubenfeld MR, Silverstone AE, Knowles DM, Halper JP, De Sostoa A, Fenoglio CM, et al. Induction of lymphocyte differentiation by epidermal cultures. J Invest Dermatol 1981;77:221–224

    Article  CAS  PubMed  Google Scholar 

  94. Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S, et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 2004;10:927–934

    Article  CAS  PubMed  Google Scholar 

  95. Iijima N, Iwasaki A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 2014;346:93–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Girard-Madoux MJ, Kel JM, Reizis B, Clausen BE. IL-10 controls dendritic cell-induced T-cell reactivation in the skin to limit contact hypersensitivity. J Allergy Clin Immunol 2012;129:143–150 e1–10

    Article  CAS  PubMed  Google Scholar 

  97. Lew W, Bowcock AM, Krueger JG. Psoriasis vulgaris: cutaneous lymphoid tissue supports T-cell activation and „Type 1“ inflammatory gene expression. Trends Immunol 2004;25:295–305

    Article  CAS  PubMed  Google Scholar 

  98. Johnson-Huang LM, Suarez-Farinas M, Pierson KC, Fuentes-Duculan J, Cueto I, Lentini T, et al. A single intradermal injection of IFN-gamma induces an inflammatory state in both non-lesional psoriatic and healthy skin. J Invest Dermatol 2012;132:1177–1187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Kim BS, Wang K, Siracusa MC, Saenz SA, Brestoff JR, Monticelli LA, et al. Basophils promote innate lymphoid cell responses in inflamed skin. J Immunol 2014;193: 3717–3725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Magro CM, Crowson AN, Kovatich AJ, Burns F. Lupus profundus, indeterminate lymphocytic lobular panniculitis and subcutaneous T-cell lymphoma: a spectrum of subcuticular T-cell lymphoid dyscrasia. J Cutan Pathol 2001;28:235–247

    Article  CAS  PubMed  Google Scholar 

  101. Massone C, Kodama K, Salmhofer W, Abe R, Shimizu H, Parodi A, et al. Lupus erythematosus panniculitis (lupus profundus): Clinical, histopathological, and molecular analysis of nine cases. J Cutan Pathol 2005;32:396–404

    Article  PubMed  Google Scholar 

  102. Bagabir R, Byers RJ, Chaudhry IH, Muller W, Paus R, Bayat A. Site-specific immunophenotyping of keloid disease demonstrates immune upregulation and the presence of lymphoid aggregates. Br J Dermatol 2012;167:1053–1066

    Article  CAS  PubMed  Google Scholar 

  103. Ploysangam T, Breneman DL, Mutasim DF. Cutaneous pseudolymphomas. J Am Acad Dermatol 1998;38:877–895

    Article  CAS  PubMed  Google Scholar 

  104. Lackey JN, Xia Y, Cho S, Sperling LC. Cutaneous lymphoid hyperplasia: a case report and brief review of the literature. Cutis 2007;79:445–448

    PubMed  Google Scholar 

  105. Ono S, Kabashima K. Proposal of skin associated lymphoid tissue. Exp Dermatol 2015; 24:630–631

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kabashima MD, PhD.

Additional information

Conflicts of interest

The authors declare that there are no conflicts of interest.

Cite this as

Ono S, Kabashima K. Novel insights into the role of immune cells in skin and inducible skin-associated lymphoid tissue (iSALT). Allergo J Int 2015; 24: 170–9 DOI: 10.1007/s40629-015-0065-1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ono, S., Kabashima, K. Novel insights into the role of immune cells in skin and inducible skin-associated lymphoid tissue (iSALT). Allergo J 24, 18–27 (2015). https://doi.org/10.1007/s15007-015-0911-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15007-015-0911-y

Key words

Navigation