Skip to main content
Log in

Acaricidal and insecticidal responses of Cinnamomum cassia oils and main constituents

  • Article
  • Published:
Applied Biological Chemistry Submit manuscript

A Correction to this article was published on 09 April 2019

This article has been updated

Abstract

Insecticidal and acaricidal responses of Cinnamomum cassia oils made by organic solvent (OS), steam distillation (SD), and supercritical fluid (SF) and their components were examined in two bioassays (contact and fumigant bioassays) against Plodia interpunctella, Sitophilus oryzae, S. zeamais, Tyrophagus putrescentiae, and Sitotroga cerealella adults. Using the contact or fumigant bioassay against T. putrescentiae adults, OS oil exhibited the strongest toxicities (50% lethal dose [LD50], 2.60 μg/cm2 and 1.34 μg/cm3), followed by SF and SD oils. Furthermore, using two bioassays, SD oil against S. oryzae and S. zeamais adults exhibited the strongest toxicities (LD50, 102.25 μg/cm2 and 68.62 μg/cm3, 102.03 μg/cm2 and 57.59 μg/cm3), followed by SF and OS oils. Using the fumigant bioassay against S. cerealella and P. interpunctella adults, OS oil exhibited the strongest toxicities (LD50, 1.17 μg/cm3 and 0.79 μg/cm3) followed by SF and SD oils. Cinnamaldehyde, cinnamyl acetate, and coumarin against T. putrescentiae adults showed no significant differences in the contact bioassay, but in the fumigant bioassay, cinnamaldehyde exhibited the highest toxicity (LD50, 0.91 μg/cm3) followed by cinnamyl acetate and coumarin. Against S. oryzae, S. zeamais, S. cerealella, and P. interpunctella adults, cinnamaldehyde using two bioassays exhibited the most potent toxicities (LD50, 108.81 μg/cm2 and 77.80 μg/cm3, 104.72 μg/cm2 and 36.48 μg/cm3, 0.57 μg/cm2 and 2.29 μg/cm3), followed by coumarin and cinnamyl acetate in order. The results showed that cinnamaldehyde and the C. cassia oils could be effective values in the management of stored product pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 09 April 2019

    Following the publication of the original article [1], the authors reported that the ‘Acknowledgements’ section was published with an error.

References

  1. Jeon YJ, Lee SG, Lee HS (2017) Acaricidal and insecticidal activities of essential oils of Cinnamomum zeylanicum barks cultivated from France and India against Dermatophagoides spp., Tyrophagus putrescentiae and Ricania sp. Appl Biol Chem 60(3):259–264

    Article  CAS  Google Scholar 

  2. Shojaaddini M, Moharramipour S, Sahaf B (2008) Fumigant toxicity of essential oil from Carum copticum against Indian meal moth, Plodia interpunctella. J Plant Prot Res 48(4):411–419

    Article  CAS  Google Scholar 

  3. Fouad HA, Faroni LRDA, de Souza Tavares W, Ribeiro RC, de Sousa Freitas S, Zanuncio JC (2014) Botanical extracts of plants from the Brazilian Cerrado for the integrated management of Sitotroga cerealella (Lepidoptera: Gelechiidae) in stored grain. J Stored Prod Res 57:6–11

    Article  Google Scholar 

  4. Sinha RB (1979) Role of Acarina in stored grain ecosystem. In: Rodriguez JG (ed) Recent advances in acarology, vol 1. Academic Press, New York, pp 263–273

    Chapter  Google Scholar 

  5. Lee HK, Lee HS (2016) Toxicities of active constituent isolated from Thymus vulgaris flowers and its structural derivatives against Tribolium castaneum (Herbst). Appl Biol Chem 59(6): 821–826

    Article  Google Scholar 

  6. Gulati R, Mathur S (1995) Effect of eucalyptus and mentha leaves and curcuma rhizomes on Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae) in wheat. Exp Appl Acarol 19(9):511–518

    Article  Google Scholar 

  7. Park IK, Lee SG, Choi DH, Park JD, Ahn YJ (2003) Insecticidal activities of constituents identified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.) and Sitophilus oryzae (L.). J Stored Prod Res 39(4):375–384

    Article  CAS  Google Scholar 

  8. Yoon C, Kang SH, Jang SA, Kim YJ, Kim GH (2007) Repellent efficacy of caraway and grapefruit oils for Sitophilus oryzae (Coleoptera: Curculionidae). J Asia Pac Entomol 10(3):263–267

    Article  CAS  Google Scholar 

  9. Gupta AK, Behal SR, Awasthi BK, Verma RA (1999) Screening of some maize genotypes against Sitophilus oryzae Linn. Int J Plant Prot 1(2):102–103

    Google Scholar 

  10. Shahjahan M (1974) Extent of damage of unhusked stored rice by Sitotroga cerealella Oliv. (Lepidoptera, Gelechiidae) in Bangladesh. J Stored Prod Res 10(1):23–26

    Article  Google Scholar 

  11. Kumar S, Park J, Kim E, Na J, Chyn YS, Kwon H, Kim Y (2015) Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal month, Plodia interpunctella. Pestic Biochem Phys 124:48–59

    Article  CAS  Google Scholar 

  12. Park JH, Lee HS (2017) Phototactic behavioral response of agricultural insects and stored-product insects to light-emitting diodes (LEDs). Appl Biol Chem 60(2):137–144

    CAS  Google Scholar 

  13. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19(8–10):603–608

    Article  CAS  Google Scholar 

  14. Su HC (1985) Laboratory evaluation of biological activity of Cinnamomum cassia to four species of stored-product insects. J Entomol Sci 20(2):247–253

    Article  Google Scholar 

  15. Giordani R, Regli P, Kaloustian J, Portugal H (2006) Potentiation of antifungal activity of amphotericin B by essential oil from Cinnamomum cassia. Phytother Res 20(1):58–61

    Article  CAS  Google Scholar 

  16. Sánchez-Ramos I, Castañera P (2000) Acaricidal activity of natural monoterpenes on Tyrophagus putrescentiae (Schrank), a mite of stored food. J Stored Prod Res 37(1):93–101

    Article  Google Scholar 

  17. Yang JY, Lee HS (2012) Acaricidal activities of the active component of Lycopus lucidus oil and its derivatives against house dust and stored food mites (Arachnida: Acari). Pest Manag Sci 68(4):564–572

    Article  CAS  Google Scholar 

  18. Park JH, Lee HS (2018) Toxicities of Eucalyptus dives oil, 3-carvomenthenone, and its analogues against stored-product insects. J Food Prot 81(4):653–658

    Article  CAS  Google Scholar 

  19. Li YQ, Kong DX, Wu H (2013) Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind Crops Prod 41:269–278

    Article  CAS  Google Scholar 

  20. Kim HK, Kim JR, Ahn YJ (2004) Acaricidal activity of cinnamaldehyde and its congeners against Tyrophagus putrescentiae (Acari: Acaridae). J Stored Prod Res 40(1):55–63

    Article  CAS  Google Scholar 

  21. Wang Z, Kim HK, Tao W, Wang M, Ahn YJ (2011) Contact and fumigant toxicity of cinnamaldehyde and cinnamic acid and related compounds to Dermatophagoides farina and Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J Med Entomol 48(2):366–371

    Article  CAS  Google Scholar 

  22. Duvey NK, Shukla R, Kumar A, Singh P, Prakash B (2011) Global scenario on the application of natural products in integrated pest management programmes. Nat Prod Plant Pest Manag 1:1–20

    Google Scholar 

  23. Huang Y, Ho H (1998) Toxicity and antifeedant activities of cinnamaldehyde against the grain storage insects, Tribolium castaneum (Herbst) and Sitophilus zeamais Motsch. J Stored Prod Res 34(1):11–17

    Article  CAS  Google Scholar 

  24. Bang KH, Lee DW, Park HM, Rhee YH (2000) Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde. Biosci Biotech Biochem 64(5):1061–1063

    Article  CAS  Google Scholar 

  25. Nagai H, Shimazawa T, Matsuura N (1982) Immunopharmacological studies of the aqueous extract of Cinnamomum cassia (CCAq) I. Anti-allergic Action. Jpn J Pharmacol 32(5):813–822

    Article  CAS  Google Scholar 

  26. Singh G, Maurya S, Catalan CA (2007) A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem Toxicol 45(9):1650–1661

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (Grant Number: HG18C0055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoi-Seon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, MS., Lee, HS. Acaricidal and insecticidal responses of Cinnamomum cassia oils and main constituents. Appl Biol Chem 61, 653–659 (2018). https://doi.org/10.1007/s13765-018-0402-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-018-0402-4

Keywords

Navigation