Skip to main content

Advertisement

Log in

Acer okamotoanum improves cognition and memory function in Aβ25–35-induced Alzheimer’s mice model

  • Article
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

We studied the effect of ethyl acetate (EA) fraction from Acer okamotoanum on cognitive improvement and protective abilities in amyloid beta (Aβ)25–35 peptide-injected Alzheimer’s disease (AD) mice. EA was oral administration at 100 and 200 mg/kg/day during the 14 days. We studied the protective effect of EA against AD on the basis of behavioral tests including T-maze test, Novel object recognition test, and Morris water maze test. Control group injected with Aβ25–35 showed significant impairments in memory function. But the oral administration of EA (EA 100 and EA 200 groups) improved the cognition and memory function. In addition, EA against Aβ25–35 peptide has been shown to inhibit lipid peroxidation levels and nitric oxide production in tissues. Acetylcholinesterase (AChE) was elevated in the brain by Aβ25–35 peptide, whereas administration of EA (EA 100 and EA 200 groups) significantly decreased AChE level. Our results indicated that EA improves learning and long-term memory against Aβ25–35 peptide–caused deficit through attenuation of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aliev G, Palacios HH, Lipsitt AE, Fischbach K, Lamb BT, Obrenovich ME, Morales L, Gasimov E, Bragin V (2009) Nitric oxide as an initiator of brain lesions during the development of Alzheimer disease. Neurotox Res 16:293–305

    Article  CAS  Google Scholar 

  • Avdulov NA, Chochina SV, Igbavboa U, O’Hare EO, Schroeder F, Cleary JP, Wood WG (1997) Amyloid beta-peptides increase annular and bulk fluidity and induce lipid peroxidation in brain synaptic plasma membranes. J Neurochem 68:2086–2091

    Article  CAS  Google Scholar 

  • Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching to-sample learning task to study ‘recognition memory’. Nat Protoc 1:1306–1311

    Article  Google Scholar 

  • Bicca MA, Costa R, Loch Neckel G, Figueiredo CP, Medeiros R, Calixto JB (2015) B2 receptor blockage prevents Aβ-induced cognitive impairment by neuroinflammation inhibition. Behav Brain Res 278:482–491

    Article  CAS  Google Scholar 

  • Brookmeyer R, Gray S (2000) Methods for projecting the incidence and prevalence of chronic diseases in aging populations: application to Alzheimer’s disease. Stat Med 19:1481–1493

    Article  CAS  Google Scholar 

  • Butterfield DA (1997) Beta-amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Chem Res Toxicol 10:495–506

    Article  CAS  Google Scholar 

  • Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic Biol Med 32:1050–1060

    Article  CAS  Google Scholar 

  • Chiapinotto Spiazzi C, Bucco Soares M, Pinto Izaguirry A, Musacchio Vargas L, Zanchi MM, Frasson Pavin N, Ferreira Affeldt R, Seibert Ludtke D, Prigol M, Santos FW (2015) Selenofuranoside ameliorates memory Loss in Alzheimer-like sporadic dementia: AChE activity, oxidative stress, and inflammation involvement. Oxid Med Cell Longev 2015:1–9

    Article  Google Scholar 

  • Choi JY, Cho EJ, Lee HS, Lee JM, Yoon YH, Lee SH (2013) Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model. Food Chem Toxicol 53:105–111

    Article  CAS  Google Scholar 

  • Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71:621–629

    Google Scholar 

  • Cotman CW, Su JH (1996) Mechanisms of neuronal death in Alzheimer’s disease. Brain Pathol 6:493–506

    Article  CAS  Google Scholar 

  • De Mattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM (2002) Brain to plasma amyloid-β efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295:2264–2267

    Article  Google Scholar 

  • Ellman GL, Courtney KD, Andres VJ, Feather Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Esmaeili TP, Moosavi SM, Shabani M, Haghani M (2015) Erythropoietin improves synaptic plasticity and memory deficits by decrease of the neurotransmitter release probability in the rat model of Alzheimer’s disease. Pharmacol Biochem Behav 130:15–21

    Article  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  Google Scholar 

  • Geula C, Mesulam M (1989) Special properties of cholinesterases in the cerebral cortex of Alzheimer’s disease. Brain Res 498:185–189

    Article  CAS  Google Scholar 

  • Jeong MH, Ha JH, Oh SH, Kim SS, Lee HJ, Kang HY, Lee HY (2009) Comparison of biological activities of Acer mono and A. okamotoanum extracts by water extraction and low temperature high pressure extraction. Korean J Med Crop Sci 17:407–414

    Google Scholar 

  • Jeong MH, Kim SS, Kim JS, Lee HJ, Choi GP, Lee HY (2010) Skin whitening and skin immune activities of different Parts of Acer mono and Acer okamotoanum. J Korean For Soc 99:470–478

    Google Scholar 

  • Kim HJ, Woo ER, Shin CG, Park HK (1998) A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. J Nat Prod 61:145–148

    Article  CAS  Google Scholar 

  • Kubo T, Nishimura S, Kumagae Y, Kaneko I (2002) In vivo conversion of racemized beta-amyloid ([D-Ser 26] Aβ1–40) to truncated and toxic fragments ([D-Ser 26]Aβ25–35/40) and fragment presence in the brains of Alzheimer’s patients. J Neurosci Res 70:474–483

    Article  CAS  Google Scholar 

  • Kwon SH, Lee HK, Kim JA, Hong SI, Kim SY, Jo TH, Park YI, Lee CK, Kim YB, Lee SY, Jang CG (2011) Neuroprotective effects of Eucommia ulmoides Oliv. Bark on amyloid beta25–35-induced learning and memory impairments in mice. Neurosci Lett 487:123–127

    Article  CAS  Google Scholar 

  • Laursen SE, Belknap JK (1986) Intracerebroventricular injections in mice. Some methodological refinements. J Pharmacol Methods 16:355–357

    Article  CAS  Google Scholar 

  • Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer’s disease. Brain Pathol 9:133–146

    Article  CAS  Google Scholar 

  • Maurice T, Lockhart BP, Privat A (1996) Amnesia induced in mice by centrally administered β-amyloid peptides involves cholinergic dysfunction. Brain Res 706:181–193

    Article  CAS  Google Scholar 

  • Melo JB, Agostinho P, Oliveira CR (2003) Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid β-peptide. Neurosci Res 45:117–127

    Article  CAS  Google Scholar 

  • Montgomery KC (1952) A test of two explanations of spontaneous alternation. J Comp Physiol Psychol 45:287–293

    Article  CAS  Google Scholar 

  • Mori K, Obaram Y, Moriya T, Inatomi S, Nakahata N (2011) Effects of Hericium erinaceus on amyloid β (25–35) peptide-induced learning and memory deficits in mice. Biomed Res 32:67–72

    Article  CAS  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying a spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  Google Scholar 

  • Nakdook W, Khongsombat O, Taepavarapruk P, Taepavarapruk N, Ingkaninan K (2010) The effects of Tabernaemontana divaricata root extract on amyloid β-peptide 25–35 peptides induced cognitive deficits in mice. J Ethnopharmacol 130:122–126

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Paban V, Manrique C, Filali M, Maunoir Regimbal S, Fauvelle F, Alescio Lautier B (2014) Therapeutic and preventive effects of methylene blue on Alzheimer’s disease pathology in a transgenic mouse model. Neuropharmacology 76:68–79

    Article  CAS  Google Scholar 

  • Park HJ, Kim SS, Kang S, Rhim H (2009) Intracellular Aβ and C99 aggregates induce mitochondria-dependent cell death in human neuroglioma H4 cells through recruitment of the 20S proteasome subunits. Brain Res 1273:1–8

    Article  CAS  Google Scholar 

  • Parnetti L, Amici S, Lanari A, Romani C, Antognelli C, Andreasen N, Minthon L, Davidsson P, Pottel H, Blennow K, Gallai V (2002) Cerebrospinal fluid levels of biomarkers and activity of acetylcholinesterase (AChE) and butyrylcholinesterase in AD patients before and after treatment with different AChE inhibitors. Neurol Sci 23:95–96

    Article  Google Scholar 

  • Pi R, Mao X, Chao X, Cheng Z, Liu M, Duan X, Ye M, Chen X, Mei Z, Liu P, Li W, Han Y (2012) Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo. PLoS ONE 7:e3192

    Google Scholar 

  • Qadir SA, Kim CH, Kwon MC, Lee HJ, Kang HY, Choi DH, Lee HY (2007) Comparison of anticancer and immune modulatory activities in the different parts for the Acer mono Max. and Acer okamotoanum. Korean J Med Crop Sci 15:405–410

    Google Scholar 

  • Reddy PH (2006) Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer’s disease. J Neurochem 96:1–13

    Article  CAS  Google Scholar 

  • Rozemuller JM, Eikelenboom P, Stam FC, Beyreuther K, Masters CL (1989) A4 protein in Alzheimer’s disease: primary and secondary cellular events in extracellular amyloid deposition. J Neuropathol Exp Neurol 48:674–691

    Article  CAS  Google Scholar 

  • Schmidt HH, Warner TD, Nakane M, Forstermann U, Murad F (1992) Regulation and sub cellular location of nitrogen oxide synthases in RAW264.7 macrophages. Mol Pharmacol 41:615–624

    CAS  Google Scholar 

  • Smith MA, Kutty RK, Richey PL, Yan SD, Stern D, Chader GJ, Wiggert B, Petersen RB, Perry G (1994) Heme oxygenase-1 is associated with the neurofibrillary pathology of Alzheimer’s disease. Am J Pathol 145:42–47

    CAS  Google Scholar 

  • Smith MA, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N (1996) Test for oxidative damage in Alzheimer’s. Nature 382:120–121

    Article  CAS  Google Scholar 

  • Stepanichev MY, Onufriev MV, Yakovlev AA, Khrenov AI, Peregud DI, Vorontsova ON, Lazareva NA, Gulyaeva NV (2008) Amyloid-β (25–35) increases activity of neuronal NO-synthase in rat brain. Neurochem Int 52:1114–1124

    Article  CAS  Google Scholar 

  • Thuong PT, Na MK, Su ND, Seong RS, Lee YM, Sok DE, Bae KH (2005) Inhibitory effect of coumarins from Weigela subsessilis on low density lipoprotein oxidation. Biol Pharm Bull 28:1095–1097

    Article  CAS  Google Scholar 

  • Torreilles F, Salman Tabcheh S, Guerin MC, Torreilles J (1999) Neurodegenerative disorders: the role of peroxynitrite. Brain Res Rev 30:153–163

    Article  CAS  Google Scholar 

  • Ulrich J, Meier Ruge W, Probst A, Meier E, Ipsen S (1990) Senile plaques: staining for acetylcholinesterase and A4 protein: a comparative study in the hippocampus and entorhinal cortex. Acta Neuropathol 80:624–628

    Article  CAS  Google Scholar 

  • Woo ER, Kim HJ, Kwak JK, Lim YK, Park SK, Kim HS, Lee CK, Park H (1997) Anti-herpetic activity of various medicinal plant extracts. Arch Pharm Res 20:58–67

    Article  CAS  Google Scholar 

  • Yatin SM, Varadarajan S, Butterfield DA (2000) Vitamin E prevents Alzheimer’s amyloid β-peptide (1-42)-induced neuronal protein oxidation and reactive oxygen species production. J Alzheimers Dis 2:123–131

    CAS  Google Scholar 

  • Yim YJ, Lee EB, Kim SH (1981) Vegetation of Ulneung and Dokdo Island. Korean Assoc Conserv Nat 19:97–112

    Google Scholar 

  • Yin Y, Liu Y, Zhuang J, Pan X, Li P, Yang Y, Li YP, Zhao ZQ, Huang LQ, Zhao ZX (2013) Melatonin in Alzheimer’s disease. Int J Mol Sci 14:14575–14593

    Article  Google Scholar 

  • Yoo YM, Jung EM, Kang HY, Choi IG, Choi KC, Jeung EB (2011) The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats. Int J Mol Sci 28:489–495

    Google Scholar 

  • Yun BS, Lee IK, Ryoo IJ (2001) Coumarins with monoamine oxidase inhibitory activity and antioxidative coumarinolignans from Hibiscus syriacus. J Nat Prod 64:1238–1240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A01058868), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanghyun Lee or Eun Ju Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S.Y., Lee, J., Lee, D.G. et al. Acer okamotoanum improves cognition and memory function in Aβ25–35-induced Alzheimer’s mice model. Appl Biol Chem 60, 1–9 (2017). https://doi.org/10.1007/s13765-016-0244-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-016-0244-x

Keywords

Navigation