Skip to main content
Log in

Antimicrobial and docking studies of (−)-catechin derivatives

  • Article
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Antimicrobial activities of (−)-catechin derivatives were assayed for their antibacterial and antifungal activities against gram positive, gram negative bacteria, and fungi. Most of the compounds significantly active among which Compounds 1a, 1b, and 1c showed excellent antibacterial for both gram negative and gram positive bacteria, these compounds also exhibited excellent antifungal activity more than the standard drug. Molecular docking studies of Compounds 1a and 1b established good binding affinity with ATP-binding pocket of DNA gyrase and are in favor of the observed biological activity. These data collectively suggest that Compounds 1a and 1b could serve as a novel antimicrobial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 36:697–705

    Article  Google Scholar 

  • Amsterdam D (1996) Susceptibility testing of antimicrobials in liquid media. In: Loman V (ed) Antibiotics in laboratory medicine, 4th edn. Williams and Wilkins, Baltimore, pp 52–111

    Google Scholar 

  • Chyu KY, Babbidge SM, Zhao X, Dandillaya R, Rietveld AG, Yano J, Dimayuga P, Cercek B, Shah PK (2004) Differential effects of green tea-derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice. Circulation 109:2448–2453

    Article  CAS  Google Scholar 

  • Fernandes R, Amador P, Prudencio C (2013) β-Lactams: chemical structure, mode of action and mechanisms of resistance. Rev Med Microbiol 24:7–17

    Article  Google Scholar 

  • Gadow AV, Joubert E, Hansmann CF (1997) Comparison of the antioxidant activity of rooibos tea (Aspalathus linearis) with green, oolong and black tea. Food Chem 60:73–77

    Article  Google Scholar 

  • Gradisar H, Pristovsek P, Plaper A, Jerala R (2007) Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. J Med Chem 50:264–271

    Article  CAS  Google Scholar 

  • Graham HN (1992) Green tea composition, consumption, and polyphenol chemistry. Prev Med 21:334–350

    Article  CAS  Google Scholar 

  • Holdgate GA, Tunnicliffe A, Ward WH, Weston SA, Rosenbrock G, Barth PT, Taylor IW, Pauptit RA, Timms D (1997) The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: a thermodynamic and crystallographic study. Biochemistry 36:9663–9673

    Article  CAS  Google Scholar 

  • Hong J, Lu H, Meng X, Ryu JH, Hara Y, Yang CS (2002) Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (−)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res 62:7241–7246

    CAS  Google Scholar 

  • Hu ZQ, Zhao WH, Hara Y, Shimamura T (2001) Epigallocatechin gallate synergy with ampicillin-sulbactam against 28 clinical isolates of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 48:361–364

    Article  CAS  Google Scholar 

  • Husain A, Rashid M, Mishra R, Parveen S, Shin D-S, Kumar D (2012) Benzimidazole bearing oxadiazole and triazolo-thiadiazoles nucleus: design and synthesis as anticancer agents. Bioorg Med Chem Lett 22:5438–5444

    Article  CAS  Google Scholar 

  • Kumar D, Harshavardhan SJ, Chirumarry S, Poornachandra Y, Jang K, Kumar CG, Yoon YJ, Zhao BX, Miao JY, Shin D-S (2015) Design, synthesis in vitro anticancer activity and docking studies of (−)-catechin derivatives. Bull Korean Chem Soc 36:564–570

    Google Scholar 

  • Miura Y, Chiba T, Tomita I, Koizumi H, Miura S, Umegaki K, Hara Y, Ikeda M, Tomita T (2001) Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice. J Nutr 131:27–32

    CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  • Park KD, Cho SJ (2010) Synthesis and antimicrobial activities of 3-O-alkyl analogues of (+)-catechin: improvement of stability and proposed action mechanism. Eur J Med Chem 45:1028–1033

    Article  CAS  Google Scholar 

  • Park KD, Lee SG, Kim SU, Kim SH, Sun WS, Cho SJ, Jung DH (2004) Anticancer activity of 3-O-acyl and alkyl-(−)-epicatechin derivatives. Bioorg Med Chem Lett 14:5189–5192

    Article  CAS  Google Scholar 

  • Paschka AG, Butler R, Young CY (1998) Induction of apoptosis in prostate cancer cell lines by the green tea component, (−)-epigallocatechin-3-gallate. Cancer Lett 130:1–7

    Article  CAS  Google Scholar 

  • Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg AL, Schacht SR (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214

    CAS  Google Scholar 

  • Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton-Miller JM, Taylor PW (2004) Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. Int J Antimicrob Agents 23:462–467

    Article  CAS  Google Scholar 

  • Uesato S, Kitagawa Y, Hara Y, Tokuda H, Okuda M, Mou XY, Nishino TH (2000) Antitumor promoting activities of 3-O-acyl-(−)epigallocatechins. Bioorg Med Chem Lett 10:1673–1675

    Article  CAS  Google Scholar 

  • Xie YS, Kumar D, Vijaykumar BVD, Tarani PS, Zhao BX, Jun YM, Jang K, Shin D-S (2014) Microwave-assisted parallel synthesis of benzofuran-2-carboxamide derivatives bearing anti-inflammatory, analgesic and antipyretic agents. Tetrahedron Lett 55:2796–2800

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants from Ministry of Environment (KME, 412-111-008) and National Research Foundation (NRF-2009-0094063), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Soo Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Poornima, M., Kushwaha, R.N. et al. Antimicrobial and docking studies of (−)-catechin derivatives. J Korean Soc Appl Biol Chem 58, 581–585 (2015). https://doi.org/10.1007/s13765-015-0079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-015-0079-x

Keywords

Navigation