Skip to main content
Log in

Phytoremediation of hexavalent chromium by mung bean through bio-accumulation and bio-stabilization in a short duration

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Phytoremediation is an effective approach to remove the challenging pollutant of hexavalent chromium [Cr(VI)] in the environment, however, which requires a relatively long work duration. Herein, we reported the utilization of mung bean (Vigna radiata) as a highly efficient accumulator for Cr(VI). Typically, within a short work duration of only 7 days, 5041 mg · kg−1 of chromium (Cr) could be accumulated in the whole plants of mung bean. Moreover, about 80% of Cr in the mung bean plants are transformed to fractions with low bioavailability. This study demonstrated that mung bean could be a promising candidate for phytoremediation of Cr(VI), not only accumulating but also stabilizing Cr(VI) within very short time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adki VS, Jadhav JP, Bapat VA (2013) Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. Environ Sci Pollut Res 20:1173–1180

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Antoniadis V, Polyzois T, Golia EE, Petropoulos SA (2017) Hexavalent chromium availability and phytoremediation potential of Cichorium spinosum as affect by manure, zeolite and soil ageing. Chemosphere 171:729–734

    Article  CAS  Google Scholar 

  • Arif MS, Yasmeen T, Shahzad SM, Riaz M, Rizwan M, Iqbal S, Asif M, Soliman MH, Ali S (2019) Lead toxicity induced phytotoxic effects on mung bean can be relegated by lead tolerant Bacillus subtilis (PbRB3). Chemosphere 234:70–80

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements, a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. BioEnergy Res 8:1500–1511

    Article  CAS  Google Scholar 

  • Bonfranceschi BA, Flocco CG, Donati ER (2009) Study of the heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment. J Hazard Mater 165:366–371

    Article  CAS  Google Scholar 

  • Buendia-Gonzalez L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Diaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101:5862–5867

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • De Oliveira LM, Gress J, De J, Rathinasabapathi B, Marchi G, Chen YS, Ma LQ (2016) Sulfate and chromate increased each other’s uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere 147:36–43

    Article  CAS  Google Scholar 

  • Desai C, Parikh RY, Vaishnav T, Shouche YS, Madamwar D (2009) Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Res Microbiol 160:1–9

    Article  CAS  Google Scholar 

  • Dias MC, Moutinho-Pereira J, Correia C, Monteiro C, Araujo M, Bruggemann W, Santos C (2016) Physiological mechanisms to cope with Cr(VI) toxicity in lettuce: can lettuce be used in Cr phytoremediation? Environ Sci Pollut Res 23:15627–15637

    Article  CAS  Google Scholar 

  • Duarte B, Silva V, Cacador I (2012) Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides. Ecotox Environ Safe 83:1–7

    Article  CAS  Google Scholar 

  • Dzantor EK (2007) Phytoremediation: the state of rhizosphere ‘engineering’ for accelerated rhizodegradation of xenobiotic contaminants. J Chem Technol Biot 82:228–232

    Article  CAS  Google Scholar 

  • Eyvazi B, Jamshidi-Zanjani A, Khodadadi Darban A (2019) Immobilization of hexavalent chromium in contaminated soil using nano-magnetic MnFe2O4. J Hazard Mater 365:813–819

    Article  CAS  Google Scholar 

  • Ghafoori M, Nik MM, Islam MM, Sylvia L (2011) Bioaccumulation of heavy metals by Dyera costulata cultivated in sewage sludge contaminated soil. Afr J Technol 10:10674–10682

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  Google Scholar 

  • Hou SY, Wu B, Peng DH, Wang ZR, Wang YY, Xu H (2019) Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron. Environ Pollut 252:553–561

    Article  CAS  Google Scholar 

  • Jabeen N, Abbas Z, Iqbal M, Rizwan M, Jabbar A, Farid M, Ali S, Ibrahim M, Abbas F (2016) Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch Agron Soil Sci 62:648–662

    Article  CAS  Google Scholar 

  • Jiang DN, Huang DL, Lai C, Xu P, Zeng GM, Wan J, Tang L, Dong HR, Huang BB, Hu TJ (2018) Difunctional chitosan-stabilized Fe/Cu bimetallic nanoparticles for removal of hexavalent chromium wastewater. Sci Total Environ 644:1181–1189

    Article  CAS  Google Scholar 

  • Jobby R, Jha P, Yadav AK, Desai N (2018) Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere 207:255–266

    Article  CAS  Google Scholar 

  • Kameswari KSB, Narasimman LM, Pedaballe V, Kalyanaraman C (2015) Diffusion and leachability index studies on stabilization of chromium contaminated soil using fly ash. J Hazard Mater 297:52–58

    Article  CAS  Google Scholar 

  • Katz SA, Salem H (1993) The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13:217–224

    Article  CAS  Google Scholar 

  • Kotaś J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  Google Scholar 

  • Kumar S, Prasad S, Yadav KK, Shrivastava M, Gupta N, Nagar S, Bach QV, Kamyab H, Khan SA, Yadav S, Malav LC (2019) Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches—a review. Environ Res 179:108792

    Article  CAS  Google Scholar 

  • Kundu D, Dey S, Raychaudhuri SS (2018) Chromium (VI)-induced stress response in the plant Plantago ovata Forsk in vitro. Gene Environ 40:21

    Article  CAS  Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Gautam A (2016) Heavy metal detoxification and tolerance mechanisms in plants: Implications for phytoremediation. Environ Rev 24:39–51

    Article  CAS  Google Scholar 

  • Li CF, Zhou KH, Qin WQ, Tian CJ, Qi M, Yan XM, Han WB (2019) A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contam 28:380–394

    Article  CAS  Google Scholar 

  • Li CY, Li WH, Lee B, Laroche A, Cao LP, Lu ZX (2011) Morphological characterization of triticale starch granules during endosperm development and seed germination. Can J Plant Sci 91:57–67

    Article  Google Scholar 

  • Liu JH, Liu Q, Li J, Zhang YQ (2019) Germination characteristics and secondary metabolism regulation of Scutellaria baicalensis Georgi under osmotic stress with PEG. Agr Biotechnol 8:57–60

    CAS  Google Scholar 

  • Liu LW, Li W, Song WP, Guo MX (2018) Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci Total Environ 633:206–219

    Article  CAS  Google Scholar 

  • Lyu HL, Tang JC, Huang Y, Gai LS, Zeng EY, Liber K, Gong YY (2017) Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite. Chem Eng J 322:516–524

    Article  CAS  Google Scholar 

  • Madera-Parra CA, Pena MR, Pena EJ, Lens PN (2015) Cr(VI) and COD removal from landfill leachate by polyculture constructed wetland at a pilot scale. Environ Sci Pollut Res 22:12804–12815

    Article  CAS  Google Scholar 

  • Maine MA, Hadad HR, Sanchez G, Caffaratti S, Pedro MC (2016) Kinetics of Cr(III) and Cr(VI) removal from water by two floating macrophytes. Int J Phytoremedia 18:261–268

    Article  CAS  Google Scholar 

  • Malaviya P, Singh A (2016) Bioremediation of chromium solutions and chromium containing wastewaters. Crit Rev Microbiol 42:607–633

    Article  CAS  Google Scholar 

  • Mant C, Costa S, Williams J, Tambourgi E (2006) Phytoremediation of chromium by model constructed wetland. Bioresour Technol 97:1767–1772

    Article  CAS  Google Scholar 

  • Mao F, Nan GJ, Cao M, Gao YQ, Guo LY, Meng XX, Yang GD (2018) The metal distribution and the change of physiological and biochemical process in soybean and mung bean plants under heavy metal stress. Int J Phytoremedia 20:1113–1120

    Article  CAS  Google Scholar 

  • Martinez-Trujillo M, Carreon-Abud Y (2015) Effect of mineral nutrients on the uptake of Cr(VI) by maize plants. New Biotechnol 32:396–402

    Article  CAS  Google Scholar 

  • Mellem JJ, Baijnath H, Odhav B (2012) Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. Afr J Agr Res 7:591–596

    Google Scholar 

  • Monferrán MV, Pignata ML, Wunderlin DA (2012) Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper. Environ Pollut 161:15–22

    Article  CAS  Google Scholar 

  • Montes MO, Peralta-Videa JR, Parsons JG, Corral Diaz B, Gardea-Torresdey JL (2013) Spectroscopic determination of the toxicity, absorption, reduction, and translocation of Cr(VI) in two Magnoliopsida species. Int J Phytoremedia 15:168–187

    Article  CAS  Google Scholar 

  • Nagarajan M, Ganesh KS (2015) Toxic effects of chromium on growth of some paddy varieties. Int Lett Nat Sci 35:36–44

    Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: Insights on induced plant toxicity. J Botan 20:1–8

    Article  CAS  Google Scholar 

  • Park M, Park J, Kang J, Han YS, Jeong HY (2018) Removal of hexavalent chromium using mackinawite (FeS)-coated sand. J Hazard Mater 360:17–23

    Article  CAS  Google Scholar 

  • Pathak AK, Kumar R, Kumar P, Yadav S (2015) Sources apportionment and spatio-temporal changes in metal pollution in surface and sub-surface soils of a mixed type industrial area in India. J Geochem Explor 159:169–177

    Article  CAS  Google Scholar 

  • Patra DK, Pradhan C, Patra HK (2018) An in situ study of growth of Lemongrass Cymbopogon flexuosus (Nees ex Steud.) W. Watson on varying concentration of Chromium (Cr(+6)) on soil and its bioaccumulation: Perspectives on phytoremediation potential and phytostabilisation of chromium toxicity. Chemosphere 193:793–799

    Article  CAS  Google Scholar 

  • Raikova S, Piccini M, Surman MK, Allen MJ, Chuck CJ (2019) Making light work of heavy metal contamination: the potential for coupling bioremediation with bioenergy production. J Chem Technol Biot 94:3064–3072

    Article  CAS  Google Scholar 

  • Ranieri E, Fratino U, Petruzzelli D, Borges AC (2013) A comparison between Phragmites Australis and Helianthus Annuus in chromium phytoextraction. Water Air Soil Pollut 224:1465

    Article  CAS  Google Scholar 

  • Redondo-Gomez S, Mateos-Naranjo E, Vecino-Bueno I, Feldman SR (2011) Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. J Hazard Mater 185:862–869

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Brooks RR (1995) Abnormal accumulation of trace metals by plants. Mining Environ Manage 3:4–8

    Google Scholar 

  • Ren G, Wang XL, Huang PH, Zhong BH, Zhang ZY, Yang L, Yang XS (2017) Chromium (VI) adsorption from wastewater using porous magnetite nanoparticles prepared from titanium residue by a novel solid-phase reduction method. Sci Total Environ 607–608:900–910

    Article  CAS  Google Scholar 

  • Saha P, Shinde O, Sarkar S (2017) Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremedia 19:87–96

    Article  CAS  Google Scholar 

  • Samantary S (2002) Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere 47:1065–1072

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  • Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar C, Pathmanabhan G (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R.Wilczek. cv CO 4) roots. Plant Sci 166:1035–1043

    Article  CAS  Google Scholar 

  • Sikdar S, Kundu M (2018) A review on detection and abatement of heavy metals. Chembioeng Rev 5:18–29

    Article  CAS  Google Scholar 

  • Smith S, Peterson PJ, Kwan KHM (1989) Chromium accumulation, transport and toxicity in plants. Toxicol Environ Chem 24:241–251

    Article  CAS  Google Scholar 

  • Suñe N, Sánchez G, Caffaratti S, Maine MA (2007) Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ Pollut 145:467–473

    Article  CAS  Google Scholar 

  • Tack FMG, Verloo MG (1995) Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review. Int J Environ Anal Chem 59:225–238

    Article  CAS  Google Scholar 

  • Tang D, Dong YM, Ren HK, Li L, He CF (2014) A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem Cent J 8:4

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Van Dongen JT, Roeb GW, Dautzenberg M, Froehlich A, Vigeolas H, Minchin PEH, Geigenberger P (2004) Phloem import and storage metabolism are highly coordinated by the low oxygen concentrations within developing wheat seeds. Plant Physiol 135:1809–1821

    Article  Google Scholar 

  • Viti C, Giovannetti L (2001) The impact of chromium contamination on soil heterotrophic and photosynthetic microorganisms. Ann Microbiol 51:201–213

    CAS  Google Scholar 

  • Wallace A, Soufi SM, Cha JW, Romney EM (1976) Some effects of chromium toxicity on bush bean plants grown in soil. Plant Soil 44:471–473

    Article  CAS  Google Scholar 

  • Weerasinghe A, Ariyawnasa S, Weerasooriya R (2008) Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation. Chemosphere 70:521–524

    Article  CAS  Google Scholar 

  • Wild H (1974) Indigenous plants and chromium in Rhodesia. Kirkia 9:233–241

    Google Scholar 

  • Wilkins DA (1957) A technique for the measurement of lead tolerance in plants. Nature 180:37–38

    Article  CAS  Google Scholar 

  • Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80:623–633

    Article  CAS  Google Scholar 

  • Wu YS, Gong WZ, Wang YM, Yang WY (2019) Shading of mature leaves systemically regulates photosynthesis and leaf area of new developing leaves via hormones. Photosynthetica 57:303–310

    Article  CAS  Google Scholar 

  • Xia SP, Song ZL, Jeyakumar P, Shaheen SM, Rinklebe J, Ok YS, Bolan N, Wang HL (2019) A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Crit Rev Environ Sci Technol 49:1027–1078

    Article  CAS  Google Scholar 

  • Yildiz M, Terzi H, Bingul N (2013) Protective role of hydrogen peroxide pretreatment on defense systems and BnMP1 gene expression in Cr(VI)-stressed canola seedlings. Ecotoxicology 22:1303–1312

    Article  CAS  Google Scholar 

  • Zhang XH, Liu J, Huang HT, Chen J, Zhu YN, Wang DQ (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67:1138–1143

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Undergraduate Training Program on Innovation and Entrepreneurship (C2019104581) and Sichuan University is gratefully acknowledged. We also thank Prof. Hui Li from School of Chemical Engineering, Sichuan University, for his kind assistance on ICP-OES measurement.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

YC, WH, PL, and YZ conceived and designed research. YC, YL, XC, HX, and JW conducted experiments. WR, PL, YX, and YW contributed analytical tools. YC analyzed data. YC wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Y. Zhang.

Additional information

Editorial responsibility: Abhishek RoyChowdhury.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Hu, W., Li, P. et al. Phytoremediation of hexavalent chromium by mung bean through bio-accumulation and bio-stabilization in a short duration. Int. J. Environ. Sci. Technol. 18, 3023–3034 (2021). https://doi.org/10.1007/s13762-020-03001-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-03001-7

Keywords

Navigation