Skip to main content
Log in

Use of low-cost biopolymers and biopolymeric composite systems for heavy metal removal from water

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The quality and quantity of freshwater resources are declining because of the pressures associated with human population increase. Heavy metals are among the most persistent and non-biodegradable pollutants associated with industrial discharges, mining activities and agricultural activities. However, a practical and affordable solution to the efficacious removal of heavy metals from wastewater prior to discharge into aquatic environments has yet to be implemented. Therefore, intensive research continues to address the sustainable use of materials from agricultural or industrial by-products in wastewater treatment. This review summarizes the properties of low-cost biopolymeric composite systems (including chitosan and hemicellulose) for the removal of heavy metals from aquatic systems. The materials presented in this review come from agricultural or industrial by-products which provide a twofold benefit of not only providing a means of treating water but also an effective method of utilization of these by-products which otherwise form an additional waste-stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed Q, Bat L, Ali QM (2012) Heavy metal levels in Thunnus albacares (Bonnaterre, 1788) from Karachi fish harbour, Pakistan. Pak J Mar Sci 21:13–21

    Google Scholar 

  • Ajitha P, Vijayalakshmi K, Saranya M, Gomathi T, Rani K, Sudha P, Sukumaran A (2017) Removal of toxic heavy metal lead (II) using chitosan oligosaccharide–graft-maleic anhydride/polyvinyl alcohol/silk fibroin composite. Int J Biol Macromol 104:1469–1482

    CAS  Google Scholar 

  • Akpor O, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. Int J Phys Sci 5:1807–1817

    CAS  Google Scholar 

  • Al Manasrah M, Kallioinen M, Ilvesniemi H, Mänttäri M (2012) Recovery of galactoglucomannan from wood hydrolysate using regenerated cellulose ultrafiltration membranes. Biores Technol 114:375–381

    CAS  Google Scholar 

  • Aliabadi M, Irani M, Ismaeili J, Najafzadeh S (2014) Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J Taiwan Inst Chem Eng 45:518–526

    CAS  Google Scholar 

  • Arbia W, Arbia L, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods—a review. Food Technol Biotechnol 51:12–25

    Google Scholar 

  • Ayoub A, Venditti RA, Pawlak JJ, Sadeghifar H, Salam A (2013a) Development of an acetylation reaction of switchgrass hemicellulose in ionic liquid without catalyst. Ind Crops Prod 44:306–314

    CAS  Google Scholar 

  • Ayoub A, Venditti RA, Pawlak JJ, Salam A, Hubbe MA (2013b) Novel hemicellulose–chitosan biosorbent for water desalination and heavy metal removal. ACS Sustain Chem Eng 1:1102–1109

    CAS  Google Scholar 

  • Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, Minami S, Okamoto Y (2015) Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 6:104–142

    CAS  Google Scholar 

  • Bai L, Hu H, Xu J (2012) Influences of configuration and molecular weight of hemicelluloses on their paper-strengthening effects. Carbohydr Polym 88:1258–1263

    CAS  Google Scholar 

  • Bansode R, Losso J, Marshall W, Rao R, Portier R (2003) Adsorption of metal ions by pecan shell-based granular activated carbons. Biores Technol 89:115–119

    CAS  Google Scholar 

  • Bazargan-Lari R, Zafarani HR, Bahrololoom ME, Nemati A (2014) Removal of Cu (II) ions from aqueous solutions by low-cost natural hydroxyapatite/chitosan composite: equilibrium, kinetic and thermodynamic studies. J Taiwan Inst Chem Eng 45:1642–1648

    CAS  Google Scholar 

  • Boddu VM, Abburi K, Randolph AJ, Smith ED (2008) Removal of copper (II) and nickel (II) ions from aqueous solutions by a composite chitosan biosorbent. Sep Sci Technol 43:1365–1381

    CAS  Google Scholar 

  • Cardenas G, Orlando P, Edelio T (2001) Synthesis and applications of chitosan mercaptanes as heavy metal retention agent. Int J Biol Macromol 28:167–174

    CAS  Google Scholar 

  • Carvalho LHD, Canedo E, Neto SF, De Lima AB, Silva C (2013) Moisture transport process in vegetable fiber composites: theory and analysis for technological applications. Industrial and technological applications of transport in porous materials. Springer, Berlin, pp 37–62

    Google Scholar 

  • Chang M-Y, Juang R-S (2004) Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J Colloid Interface Sci 278:18–25

    CAS  Google Scholar 

  • Chen C-Y, Yang C-Y, Chen A-H (2011) Biosorption of Cu (II), Zn (II), Ni (II) and Pb(II) ions by cross-linked metal-imprinted chitosans with epichlorohydrin. J Environ Manag 92:796–802

    CAS  Google Scholar 

  • Copello G, Varela F, Vivot RM, Díaz L (2008) Immobilized chitosan as biosorbent for the removal of Cd (II), Cr(III) and Cr(VI) from aqueous solutions. Biores Technol 99:6538–6544

    CAS  Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    CAS  Google Scholar 

  • Crini G, Badot P-M (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447

    CAS  Google Scholar 

  • Dax D, Chávez MS, Xu C, Willför S, Mendonça RT, Sánchez J (2014) Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohydr Polym 111:797–805

    CAS  Google Scholar 

  • Dragan ES, Cocarta AI, Dinu MV (2014) Facile fabrication of chitosan/poly (vinyl amine) composite beads with enhanced sorption of Cu2+. Equilibrium, kinetics, and thermodynamics. Chem Eng J 255:659–669

    CAS  Google Scholar 

  • El-Reash YA (2016) Magnetic chitosan modified with cysteine-glutaraldehyde as adsorbent for removal of heavy metals from water. J Environ Chem Eng 4:3835–3847

    Google Scholar 

  • Fan D, Zhu X, Xu M, Yan J (2006) Adsorption properties of chromium (VI) by chitosan coated montmorillonite. J Biol Sci 6:941–945

    CAS  Google Scholar 

  • Fan L, Luo C, Lv Z, Lu F, Qiu H (2011) Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+. J Hazard Mater 194:193–201

    CAS  Google Scholar 

  • Fang J, Sun R, Tomkinson J, Fowler P (2000) Acetylation of wheat straw hemicellulose B in a new non-aqueous swelling system. Carbohydr Polym 41:379–387

    CAS  Google Scholar 

  • Feng D, Aldrich C, Tan H (2000) Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Miner Eng 13:623–642

    CAS  Google Scholar 

  • Filipkowska U, Jóźwiak T, Szymczyk P (2014) Application of cross-linked chitosan for phosphate removal from aqueous solutions. Prog Chem Appl Chitin Deriv 19:5–14

    CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    CAS  Google Scholar 

  • Fu Y, Xu X, Huang Y, Hu J, Chen Q, Wu Y (2017) Preparation of new diatomite–chitosan composite materials and their adsorption properties and mechanism of Hg(II). R Soc Open Sci 4:170829

    Google Scholar 

  • Ge H, Hua T, Chen X (2016) Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. J Hazard Mater 308:225–232

    CAS  Google Scholar 

  • George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Controlled Release 114:1–14

    CAS  Google Scholar 

  • Gerente C, Lee V, Cloirec PL, Mckay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Environ Sci Technol 37:41–127

    CAS  Google Scholar 

  • Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836

    CAS  Google Scholar 

  • Ghaedi M, Mosallanejad N (2013) Removal of heavy metal ions from polluted waters by using of low cost adsorbents. J Chem Health Risks 3:7–21

    Google Scholar 

  • Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64:194–205

    Google Scholar 

  • Gonçalves VL, Laranjeira M, Fávere VT, Pedrosa RC (2005) Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium. Polímeros 15:6–12

    Google Scholar 

  • Guibal E (2004) Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol 38:43–74

    CAS  Google Scholar 

  • Guibal E, Van Vooren M, Dempsey BA, Roussy J (2006) A review of the use of chitosan for the removal of particulate and dissolved contaminants. Sep Sci Technol 41:2487–2514

    CAS  Google Scholar 

  • Gunatilake S (2015) Methods of removing heavy metals from industrial wastewater. Methods 1:14

    Google Scholar 

  • Guo X, Chen F (2005) Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ Sci Technol 39:6808–6818

    CAS  Google Scholar 

  • Gupta A, Vidyarthi SR, Sankararamakrishnan N (2015) Studies on glutaraldehyde crosslinked xanthated chitosan towards the removal of mercury (II) from contaminated water streams. Environ Eng Manag J (EEMJ) 14:1037–1044

    CAS  Google Scholar 

  • Hande PE, Samui AB, Kulkarni PS (2015) Highly selective monitoring of metals by using ion-imprinted polymers. Environ Sci Pollut Res 22:7375–7404

    CAS  Google Scholar 

  • Hanh TT, Huy HT, Hien NQ (2015) Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water. Radiat Phys Chem 106:235–241

    CAS  Google Scholar 

  • Hasan S, Krishnaiah A, Ghosh TK, Viswanath DS, Boddu VM, Smith ED (2003) Adsorption of chromium (VI) on chitosan-coated perlite. Sep Sci Technol 38:3775–3793

    CAS  Google Scholar 

  • Hasan S, Krishnaiah A, Ghosh TK, Viswanath DS, Boddu VM, Smith ED (2006) Adsorption of divalent cadmium (Cd (II)) from aqueous solutions onto chitosan-coated perlite beads. Ind Eng Chem Res 45:5066–5077

    CAS  Google Scholar 

  • Hasan M, Ahmad A, Hameed B (2008) Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chem Eng J 136:164–172

    CAS  Google Scholar 

  • He J, Lu Y, Luo G (2014) Ca (II) imprinted chitosan microspheres: an effective and green adsorbent for the removal of Cu (II), Cd (II) and Pb(II) from aqueous solutions. Chem Eng J 244:202–208

    CAS  Google Scholar 

  • Hebeish A, Rafei R, El-Shafei A (2004) Crosslinking of chitosan with glutaraldehyde for removal of dyes and heavy metal ions from aqueous solutions. Tinctoria 101:28–34

    CAS  Google Scholar 

  • Huang L, Yuan S, Lv L, Tan G, Liang B, Pehkonen S (2013) Poly (methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd (II) ions from aqueous solution. J Colloid Interface Sci 405:171–182

    CAS  Google Scholar 

  • Hussain A, Maitra J, Khan KA (2017) Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater. Appl Water Sci 7:4525–4537

    CAS  Google Scholar 

  • Islam S, Bhuiyan MR, Islam M (2017) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25:854–866

    CAS  Google Scholar 

  • Jeon C, Höll WH (2003) Chemical modification of chitosan and equilibrium study for mercury ion removal. Water Res 37:4770–4780

    CAS  Google Scholar 

  • Jin X, Li K, Ning P, Bao S, Tang L (2017) Removal of Cu (II) ions from aqueous solution by magnetic chitosan-tripolyphosphate modified silica-coated adsorbent: characterization and mechanisms. Water Air Soil Pollut 228:302

    Google Scholar 

  • Kabir SF, Sikdar PP, Haque B, Bhuiyan MR, Ali A, Islam M (2018) Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog Biomater 7:153–174

    CAS  Google Scholar 

  • Kalyani S, Priya JA, Rao PS, Krishnaiah A (2005) Removal of copper and nickel from aqueous solutions using chitosan coated on perlite as biosorbent. Sep Sci Technol 40:1483–1495

    CAS  Google Scholar 

  • Karthik R, Meenakshi S (2014) Facile synthesis of cross linked-chitosan–grafted-polyaniline composite and its Cr(VI) uptake studies. Int J Biol Macromol 67:210–219

    CAS  Google Scholar 

  • Khan TS, Mubeen U (2012) Wheat straw: a pragmatic overview. Curr Res J Biol Sci 4:673–675

    CAS  Google Scholar 

  • Krishna Kumar AS, Kalidhasan S, Rajesh V, Rajesh N (2013) Adsorptive demercuration by virtue of an appealing interaction involving biopolymer cellulose and mercaptobenzothiazole. Ind Eng Chem Res 52:11838–11849

    CAS  Google Scholar 

  • Kuczajowska-Zadrożna M, Filipkowska U, Jóźwiak T (2020) Adsorption of Cu (II) and Cd (II) from aqueous solutions by chitosan immobilized in alginate beads. J Environ Chem Eng 8:103878

    Google Scholar 

  • Kumar J, Arland S, Gour P (2020) Mercury removal from simulated waste water by chitosan nano composite embedded with leaf extract of Brassica Gongylodes. In: Materials today: proceedings

  • Kusrini E, Sofyan N, Nurjaya DM, Santoso S, Tristantini D (2013) Removal of heavy metals from aqueous solution by hydroxyapatite/chitosan composite. Advanced Materials Research. Trans Tech Publ, pp 176–179

  • Kwok KC, Koong LF, Chen G, Mckay G (2014) Mechanism of arsenic removal using chitosan and nanochitosan. J Colloid Interface Sci 416:1–10

    CAS  Google Scholar 

  • Kyzas GZ, Deliyanni EA (2013) Mercury (II) removal with modified magnetic chitosan adsorbents. Molecules 18(6):6193–6214

  • Kyzas GZ, Kostoglou M, Lazaridis NK, Bikiaris DN (2013) N-(2-Carboxybenzyl) grafted chitosan as adsorptive agent for simultaneous removal of positively and negatively charged toxic metal ions. J Hazard Mater 244:29–38

    Google Scholar 

  • Kyzas GZ, Siafaka PI, Lambropoulou DA, Lazaridis NK, Bikiaris DN (2014) Poly (itaconic acid)-grafted chitosan adsorbents with different cross-linking for Pb(II) and Cd (II) uptake. Langmuir 30:120–131

    CAS  Google Scholar 

  • Lasko C, Pesic B, Oliver D (1993) Enhancement of the metal-binding properties of chitosan through synthetic addition of sulfur-and nitrogen-containing compounds. J Appl Polym Sci 48:1565–1570

    CAS  Google Scholar 

  • Laszlo JA, Dintzis FR (1994) Crop resides as lon-exchange materials. Treatment of soybean hull and sugar beet fiber (pulp) with epichlorohydrin to improve cation-exchange capacity and physical stability. J Appl Polym Sci 52:531–538

    CAS  Google Scholar 

  • Lee HC, Jeong YG, Min BG, Lyoo WS, Lee SC (2009) Preparation and acid dye adsorption behavior of polyurethane/chitosan composite foams. Fibers Polym 10:636–642

    CAS  Google Scholar 

  • Li N, Bai R (2005) Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Sep Purif Technol 42:237–247

    CAS  Google Scholar 

  • Li Y, Cao L, Li L, Yang C (2015) In situ growing directional spindle TiO2 nanocrystals on cellulose fibers for enhanced Pb2+ adsorption from water. J Hazard Mater 289:140–148

    CAS  Google Scholar 

  • Li D, Tian X, Wang Z, Guan Z, Li X, Qiao H, Ke H, Luo L, Wei Q (2020) Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem Eng J 383:123127

    Google Scholar 

  • Liimatainen H, Visanko M, Sirviö JA, Hormi OE, Niinimaki J (2012) Enhancement of the nanofibrillation of wood cellulose through sequential periodate–chlorite oxidation. Biomacromolecules 13:1592–1597

    CAS  Google Scholar 

  • Liu M, Deng Y, Zhan H, Zhang X (2002) Adsorption and desorption of copper (II) from solutions on new spherical cellulose adsorbent. J Appl Polym Sci 84:478–485

    CAS  Google Scholar 

  • Liu J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly (acrylic acid)/sodium humate superabsorbent. Carbohydr Polym 70:166–173

    CAS  Google Scholar 

  • Liu B, Lv X, Meng X, Yu G, Wang D (2013a) Removal of Pb(II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions. Chem Eng J 220:412–419

    CAS  Google Scholar 

  • Liu T, Yang X, Wang Z-L, Yan X (2013b) Enhanced chitosan beads-supported FeO-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers. Water Res 47:6691–6700

    CAS  Google Scholar 

  • Liu J, Chen Y, Han T, Cheng M, Zhang W, Long J, Fu X (2019) A biomimetic SiO2@ chitosan composite as highly-efficient adsorbent for removing heavy metal ions in drinking water. Chemosphere 214:738–742

    CAS  Google Scholar 

  • Luo X, Zeng J, Liu S, Zhang L (2015) An effective and recyclable adsorbent for the removal of heavy metal ions from aqueous system: magnetic chitosan/cellulose microspheres. Biores Technol 194:403–406

    CAS  Google Scholar 

  • Madhumathi K, Binulal N, Nagahama H, Tamura H, Shalumon K, Selvamurugan N, Nair S, Jayakumar R (2009) Preparation and characterization of novel β-chitin–hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol 44:1–5

    CAS  Google Scholar 

  • MäKi-Arvela PI, Salmi T, Holmbom B, WillföR S, Murzin DY (2011) Synthesis of sugars by hydrolysis of hemicelluloses—a review. Chem Rev 111:5638–5666

    Google Scholar 

  • Mcafee BJ, Gould WD, Nadeau JC, Da Costa AC (2001) Biosorption of metal ions using chitosan, chitin, and biomass of Rhizopus oryzae. Sep Sci Technol 36:3207–3222

    CAS  Google Scholar 

  • Metin AÜ, Alver E (2016) Fibrous polymer-grafted chitosan/clay composite beads as a carrier for immobilization of papain and its usability for mercury elimination. Bioprocess Biosyst Eng 39:1137–1149

    CAS  Google Scholar 

  • Miretzky P, Cirelli AF (2009) Hg (II) removal from water by chitosan and chitosan derivatives: a review. J Hazard Mater 167:10–23

    CAS  Google Scholar 

  • Mohammad AM, Eldin TAS, Hassan. MA, El-Anadouli BE (2017) Efficient treatment of lead-containing wastewater by hydroxyapatite/chitosan nanostructures. Arab J Chem 10:683–690

    CAS  Google Scholar 

  • Mututuvari TM, Tran CD (2014) Synergistic adsorption of heavy metal ions and organic pollutants by supramolecular polysaccharide composite materials from cellulose, chitosan and crown ether. J Hazard Mater 264:449–459

    CAS  Google Scholar 

  • Ngah WW, Fatinathan S (2008) Adsorption of Cu (II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chem Eng J 143:62–72

    CAS  Google Scholar 

  • Ngah WW, Kamari A, Koay Y (2004) Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. Int J Biol Macromol 34:155–161

    Google Scholar 

  • Ngah WSW, Ariff NFM, Hanafiah MAKM (2010) Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions. Water Air Soil Pollut 206:225–236

    CAS  Google Scholar 

  • Ngah WW, Teong L, Hanafiah M (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456

    Google Scholar 

  • Niu Y, Qu R, Sun C, Wang C, Chen H, Ji C, Zhang Y, Shao X, Bu F (2013) Adsorption of Pb(II) from aqueous solution by silica-gel supported hyperbranched polyamidoamine dendrimers. J Hazard Mater 244:276–286

    Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Biores Technol 99:6709–6724

    Google Scholar 

  • Park S, Gomez-Flores A, Chung YS, Kim H (2015) Removal of cadmium and lead from aqueous solution by hydroxyapatite/chitosan hybrid fibrous sorbent: kinetics and equilibrium studies. J Chem 2015:1–7

  • Peng F, Peng P, Xu F, Sun R-C (2012a) Fractional purification and bioconversion of hemicelluloses. Biotechnol Adv 30:879–903

    CAS  Google Scholar 

  • Peng X-W, Zhong L-X, Ren J-L, Sun R-C (2012b) Highly effective adsorption of heavy metal ions from aqueous solutions by macroporous xylan-rich hemicelluloses-based hydrogel. J Agric Food Chem 60:3909–3916

    CAS  Google Scholar 

  • Pillai SS, Deepa B, Abraham E, Girija N, Geetha P, Jacob L, Koshy M (2013) Biosorption of Cd (II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies. Ecotoxicol Environ Saf 98:352–360

    CAS  Google Scholar 

  • Qi H, Jiang X, Zhou D, Zhu B, Qin L, Ma C, Ong Y, Murata Y (2013) Removal of heavy metals in aqueous solution using Antarctic krill chitosan/hydroxyapatite composite. Fibers Polym 14:1134–1140

    CAS  Google Scholar 

  • Qu R, Sun C, Wang M, Ji C, Xu Q, Zhang Y, Wang C, Chen H, Yin P (2009) Adsorption of Au(III) from aqueous solution using cotton fiber/chitosan composite adsorbents. Hydrometallurgy 100:65–71

    CAS  Google Scholar 

  • Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    CAS  Google Scholar 

  • Rahmi L, Julinawati S (2017) Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions. Carbohydr Polym 170:226–233

    CAS  Google Scholar 

  • Rajamani M, Rajendrakumar K (2019) Chitosan-boehmite desiccant composite as a promising adsorbent towards heavy metal removal. J Environ Manag 244:257–264

    CAS  Google Scholar 

  • Rakati KK, Mirzaei M, Maghsoodi S, Shahbazi A (2019) Preparation and characterization of poly aniline modified chitosan embedded with ZnO–Fe3O4 for Cu (II) removal from aqueous solution. Int J Biol Macromol 130:1025–1045

    Google Scholar 

  • Reddy NS, Rao K (2016) Polymeric hydrogels: recent advances in toxic metal ion removal and anticancer drug delivery applications. Indian J Adv Chem Sci 4(2):214–234

    CAS  Google Scholar 

  • Ren Y, Abbood HA, He F, Peng H, Huang K (2013) Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem Eng J 226:300–311

    CAS  Google Scholar 

  • Rico M, Rodríguez-Llamazares S, Barral L, Bouza R, Montero B (2016) Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose. Carbohydr Polym 149:83–93

    CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    CAS  Google Scholar 

  • Riva R, Ragelle H, Des Rieux A, Duhem N, Jérôme C, Préat V (2011) Chitosan and chitosan derivatives in drug delivery and tissue engineering. Chitosan for biomaterials II. Springer, Berlin

    Google Scholar 

  • Saber-Samandari S, Saber-Samandari S, Nezafati N, Yahya K (2014) Efficient removal of lead (II) ions and methylene blue from aqueous solution using chitosan/Fe-hydroxyapatite nanocomposite beads. J Environ Manag 146:481–490

    CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    CAS  Google Scholar 

  • Saha S, Sarkar P (2012) Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. J Hazard Mater 227:68–78

    Google Scholar 

  • Salam A, Pawlak JJ, Venditti RA, El-Tahlawy K (2011a) Incorporation of carboxyl groups into xylan for improved absorbency. Cellulose 18:1033–1041

    CAS  Google Scholar 

  • Salam A, Venditti RA, Pawlak JJ, El-Tahlawy K (2011b) Crosslinked hemicellulose citrate–chitosan aerogel foams. Carbohydr Polym 84:1221–1229

    CAS  Google Scholar 

  • Salem HS, Chilingarian GV (2000) Influence of porosity and direction of flow on tortuosity in unconsolidated porous media. Energy Sources 22:207–213

    Google Scholar 

  • Sargın İ, Kaya M, Arslan G, Baran T, Ceter T (2015) Preparation and characterisation of biodegradable pollen–chitosan microcapsules and its application in heavy metal removal. Biores Technol 177:1–7

    Google Scholar 

  • Saurabh CK, Adnan A, Fazita MN, Syakir M, Davoudpour Y, Rafatullah M, Abdullah C, Haafiz M, Dungani R (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohydr Polym 150:216–226

    Google Scholar 

  • Shen J, Kaur I, Baktash MM, He Z, Ni Y (2013) A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process. Biores Technol 127:59–65

    CAS  Google Scholar 

  • Sorapong J, Peter G, Ruangsri W, Surasak W (2004) Enhancement of lac dye adsorption cotton fibres by poly (ethyleneinine). Dyes Pigments 63:231–237

    Google Scholar 

  • Su F, Zhou H, Zhang Y, Wang G (2016) Three-dimensional honeycomb-like structured zero-valent iron/chitosan composite foams for effective removal of inorganic arsenic in water. J Colloid Interface Sci 478:421–429

    CAS  Google Scholar 

  • Sun J, Sun X, Sun R, Su Y (2004) Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr Polym 56:195–204

    CAS  Google Scholar 

  • Sun S, Wang L, Wang A (2006) Adsorption properties of crosslinked carboxymethyl-chitosan resin with Pb(II) as template ions. J Hazard Mater 136:930–937

    CAS  Google Scholar 

  • Swarnalatha K, Ayoob S (2016) Adsorption studies on coir pith for heavy metal removal. Int J Sustain Eng 9:259–265

    Google Scholar 

  • Swayampakula K, Boddu VM, Nadavala SK, Abburi K (2009) Competitive adsorption of Cu (II), Co (II) and Ni (II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent. J Hazard Mater 170:680–689

    CAS  Google Scholar 

  • Tang D-S, Zhang L, Chen H-L, Liang Y-R, Lu J-L, Liang H-L, Zheng X-Q (2007) Extraction and purification of solanesol from tobacco:(I). Extraction and silica gel column chromatography separation of solanesol. Sep Purif Technol 56:291–295

    CAS  Google Scholar 

  • Tang S, Yang J, Lin L, Peng K, Chen Y, Jin S, Yao W (2020) Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem Eng J 393:124728

    CAS  Google Scholar 

  • Teli MD, Sheikh J (2012) Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon. Int J Biol Macromol 50(5):1195–1200

    CAS  Google Scholar 

  • Tirtom VN, Dinçer A, Becerik S, Aydemir T, Çelik A (2012) Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chem Eng J 197:379–386

    CAS  Google Scholar 

  • Tran CD, Duri S, Delneri A, Franko M (2013) Chitosan–cellulose composite materials: preparation, characterization and application for removal of microcystin. J Hazard Mater 252:355–366

    Google Scholar 

  • Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462

    CAS  Google Scholar 

  • Ullah I, Nadeem R, Iqbal M, Manzoor Q (2013) Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecol Eng 60:99–107

    Google Scholar 

  • Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130

    CAS  Google Scholar 

  • Van Dam J (2002) Coir processing technologies: improvement of drying, softening, bleaching and dyeing coir fibre/yarn and printing coir floor coverings. Technical paper

  • Varma A, Deshpande S, Kennedy J (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55:77–93

    CAS  Google Scholar 

  • Vasconcelos HL, Camargo TP, Gonçalves NS, Neves A, Laranjeira MC, Fávere VT (2008) Chitosan crosslinked with a metal complexing agent: synthesis, characterization and copper (II) ions adsorption. React Funct Polym 68:572–579

    CAS  Google Scholar 

  • Vijayalakshmi K, Gomathi T, Latha S, Hajeeth T, Sudha P (2016) Removal of copper (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int J Biol Macromol 82:440–452

    CAS  Google Scholar 

  • Wan M-W, Kan C-C, Rogel BD, Dalida MLP (2010) Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydr Polym 80:891–899

    CAS  Google Scholar 

  • Wang J, Wei L, Ma Y, Li K, Li M, Yu Y, Wang L, Qiu H (2013a) Collagen/cellulose hydrogel beads reconstituted from ionic liquid solution for Cu (II) adsorption. Carbohydr Polym 98:736–743

    CAS  Google Scholar 

  • Wang X, Deng W, Xie Y, Wang C (2013b) Selective removal of mercury ions using a chitosan–poly (vinyl alcohol) hydrogel adsorbent with three-dimensional network structure. Chem Eng J 228:232–242

    CAS  Google Scholar 

  • Wei W, Kim S, Song M-H, Bediako JK, Yun Y-S (2015) Carboxymethyl cellulose fiber as a fast binding and biodegradable adsorbent of heavy metals. J Taiwan Inst Chem Eng 57:104–110

    CAS  Google Scholar 

  • Wittmar AS, Klug J, Ulbricht M (2020) Cellulose/chitosan porous spheres prepared from 1-butyl-3-methylimidazolium acetate/dimethylformamide solutions for Cu2+ adsorption. Carbohydr Polym 237:116–135

    Google Scholar 

  • Wu F-C, Tseng R-L, Juang R-S (2010) A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manag 91:798–806

    CAS  Google Scholar 

  • Wu S, Kan J, Dai X, Shen X, Zhang K, Zhu M (2017) Ternary carboxymethyl chitosan-hemicellulose-nanosized TiO2 composite as effective adsorbent for removal of heavy metal contaminants from water. Fibers Polym 18:22–32

    CAS  Google Scholar 

  • Yang Y-Q, Chen H-J (2007) Study on the intercalation organobentonite and its adsorption. J Xinyang Normal Univ 3:023

    Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174

    CAS  Google Scholar 

  • Younus S (2014) Synthesis and characterization of chitosan–glutaraldehyde sorbent materials for the removal of arsenate. University of Saskatchewan, Saskatoon

    Google Scholar 

  • Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25:933–943

    CAS  Google Scholar 

  • Yusof NLBM, Lim LY, Khor E (2001) Preparation and characterization of chitin beads as a wound dressing precursor. J Biomed Mater Res Part A 54:59–68

    CAS  Google Scholar 

  • Yusof NLBM, Wee A, Lim LY, Khor E (2003) Flexible chitin films as potential wound-dressing materials: wound model studies. J Biomed Mater Res Part A 66:224–232

    Google Scholar 

  • Zhang M, Helleur R, Zhang Y (2015) Ion-imprinted chitosan gel beads for selective adsorption of Ag+ from aqueous solutions. Carbohydr Polym 130:206–212

    CAS  Google Scholar 

  • Zhang M, Zhang Z, Peng Y, Feng L, Li X, Zhao C, Zheng H (2020) Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range. Int J Biol Macromol 156:289–301

  • Zhou D, Zhang L, Zhou J, Guo S (2004a) Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res 38:2643–2650

    CAS  Google Scholar 

  • Zhou D, Zhang L, Zhou J, Guo S (2004b) Development of a fixed-bed column with cellulose/chitin beads to remove heavy-metal ions. J Appl Polym Sci 94:684–691

    CAS  Google Scholar 

  • Zhou Y, Fu S, Zhang L, Zhan H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82

    CAS  Google Scholar 

  • Zhu H, Jiang R, Xiao L, Zeng G (2010) Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Biores Technol 101:5063–5069

    CAS  Google Scholar 

  • Zhua X, Tanga Y-B, Chena F-Y, Shia Y, Wanga X-G (2019) Synthesis of magnetic rectorite/humic acid/chitosan composite for removal of heavy metal ions from water. Desalin Water Treat 163:155–165

    Google Scholar 

  • Zia Q, Tabassum M, Lu Z, Khawar MT, Song J, Gong H, Meng J, Li Z, Li J (2020) Porous poly (L–lactic acid)/chitosan nanofibres for copper ion adsorption. Carbohydr Polym 227:115343

    Google Scholar 

  • Zinadini S, Zinatizadeh A, Rahimi M, Vatanpour V, Zangeneh H, Beygzadeh M (2014) Novel high flux antifouling nanofiltration membranes for dye removal containing carboxymethyl chitosan coated Fe3O4 nanoparticles. Desalination 349:145–154

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been made possible by the Higher Education Commission of Pakistan (Pak-HEC) which provided funding (Grant No. PD/OS-II/Batch-VII/Final/2017) to support Ph.D. studies at the University of Waikato, New Zealand. ZZ is grateful to the Pak-HEC for the provision of a doctoral scholarship to facilitate these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mucalo.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zia, Z., Hartland, A. & Mucalo, M.R. Use of low-cost biopolymers and biopolymeric composite systems for heavy metal removal from water. Int. J. Environ. Sci. Technol. 17, 4389–4406 (2020). https://doi.org/10.1007/s13762-020-02764-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02764-3

Keywords

Navigation