Skip to main content
Log in

Bio-decolorization and novel bio-transformation of methyl orange by brown-rot fungi

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

An investigation was conducted to assess the ability of three species of brown-rot fungi to decolorize and transform methyl orange dye. Methyl orange was decolorized in a potato dextrose agar medium by Fomitopsis pinicola, Gloeophyllum trabeum, and Daedalea dickinsii at different concentrations of 50, 75, and 100 mg L−1. Based on the values of the decolorization index, the highest methyl orange decolorization was found approximately 91% by F. pinicola, followed by D. dickinsii and G. trabeum of 82% and 76%, respectively, at a concentration of 50 mg L−1. F. pinicola had the highest methyl orange transformation with percent decolorization values of approximately 97%, followed by D. dickinsii and G. trabeum of 93% and 67%, respectively, after a 14-day incubation period in potato dextrose broth. F. pinicola transformed methyl orange into six metabolic products: compounds 3, 6, 7, 8, 9, and 10, while G. trabeum transformed methyl orange into five metabolic products: compounds 1, 2, 3, 4, and 5. Among brown-rot fungi, D. dickinsii had more metabolic products, with compounds 3, 4, 6, 11, 12, 13, 14, 15, 16, 17, and 18. Based on the identification of metabolic products, novel bio-transformation was proposed that brown-rot fungi initially transformed methyl orange via three pathways: (1) demethylation, (2) desulfonylation, and (3) hydroxylation. This study indicated that brown-rot fungi can be used to decolorize and transform methyl orange dye as well as proposed novel bio-transformation of methyl orange by brown-rot fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramian L, El-Rassy H (2009) Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel. Chem Eng J 150:403–410

    Article  CAS  Google Scholar 

  • Akamatsu Y, Takahashi M, Shimada M (1992) Cell-free extraction and assay of oxaloacetate from the brown-rot fungus Tyromyces palustris. Mokuzai Gakkaishi 38:495–500

    CAS  Google Scholar 

  • Ayed L, Khelifi E, Jannet HB, Miladi H, Cheref A, Achour S, Bakhrouf A (2010) Response surface methodology for decolorization of azo dye Methyl Orange by bacterial consortium: produced enzymes and metabolites characterization. Chem Eng J 165:200–208

    Article  CAS  Google Scholar 

  • Bazrafshan E, Zarei AA, Nadi H, Zazouli MA (2014) Adsorptive removal of Methyl Orange dan Reactive Red 198 dyes by Moringa peregrina ash. Indian J Chem Techn 21:105–113

    Article  CAS  Google Scholar 

  • Bigg T, Judd S (2001) Kinetics of reductive degradation of azo dye by zero-valent iron. Process Saf Environ Prot 79(5):297–303

    Article  CAS  Google Scholar 

  • Bokare AD, Chikate RC, Rode CV, Paknikar KM (2008) Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl Catal B Environ 79(3):270–278

    Article  CAS  Google Scholar 

  • Camargo BCV, Morales MAM (2013) Azo dyes: characterization dan toxicity-A review. Text Light Indus Sci Techn (TLIST) 2:85–103

    Google Scholar 

  • Chacón JM, Leal MT, Sánchez M, Bandala ER (2006) Solar photocatalytic degradation of azo-dyes by photo-Fenton process. Dyes Pigm 69(3):144–150

    Article  CAS  Google Scholar 

  • Chen C, Liu J, Liu P, Yu B (2011) Investigation of photocatalytic degradation of methyl orange by using nano-sized ZnO catalysts. Adv Chem Eng Sci 1(01):9–14

    Article  CAS  Google Scholar 

  • D’Souza TM, Boominathan K, Reddy CA (1996) Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. App Environ Microb 62(10):3739–3744

    Google Scholar 

  • Del Nero J, de Araujo RE, Gomes ASL, de Melo CP (2005) Theoretical and experimental investigation of the second hyperpolarizabilities of methyl orange. J Chem Phys 122:104506

    Article  CAS  Google Scholar 

  • Du LN, Li G, Zhao YH, Xu HK, Wang Y, Zhou Y, Wang L (2015) Efficient metabolism of the azo dye methyl orange by Aeromonas sp. strain DH-6: characteristics and partial mechanism. Int Biodeterior Biodegrad 105:66–72

    Article  CAS  Google Scholar 

  • Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microb 42:881–895

    Article  CAS  Google Scholar 

  • Espejo E, Agosin E (1991) Production and degradation of oxalic acid by brown rot fungi. App Environ Microbiol 57(7):1980–1986

    CAS  Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910

    Article  CAS  Google Scholar 

  • Gomaa OM, Kareem H, Fatahy R (2010) Assessment of the efficacy of brown rot fungi in real textile waste water treatment. J Biotech 150:261

    Article  Google Scholar 

  • Gomathi DL, Girish KS, Mohan RK, Munikrishnappa C (2009) Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism. J Hazard Mater 164(2–3):459–467

    Article  CAS  Google Scholar 

  • Grizca BE, Setyo PA (2018) Abilities of co-cultures of white-rot fungus Ganoderma lingzhi and bacteria Bacillus subtilis on biodegradation DDT. J Phys Conf Ser 1095:102015

    Google Scholar 

  • Gutowska A, Czaplinska J, Jozwiak W (2007) Degradation mechanism of reactive Orange 113 dye by H2O2/Fe2+ and ozone in aqueous solution. Dyes Pigm 74:41–46

    Article  CAS  Google Scholar 

  • Jadhav SU, Kalme SD, Govindwar SP (2008) Biodegradation of Methyl red by Galactomyces geotrichum MTCC 1360. Int Biodeterior Biodegrad 62:135–142

    Article  CAS  Google Scholar 

  • Jayasinghe C, Imtiaj A, Lee GW, Im KH, Hur H, Yang HS, Lee TS (2008) Degradation of three aromatic dyes by white rot fungi and the production of ligninolytic enzymes. Mycobiology 36:114–120

    Article  CAS  Google Scholar 

  • Koenigs JW (1974) Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fiber 6:66–80

    Google Scholar 

  • Levin L, Grassi E, Carballo R (2012) Efficient azoic dye degradation by Trametes trogii and a novel strategy to evaluate products released. Int Biodeterior Biodegrad 75:214–222

    Article  CAS  Google Scholar 

  • Liakou S, Pavlou S, Lyberatos G (1997) Ozonation of azo dyes. Water Sci Technol 35(4):279–286

    Article  CAS  Google Scholar 

  • Mahmood RT, Asad MJ, Asgher M, Gulfraz M, Mukhtar T (2017) Analysis of lingolytic enzymes and decolorization of dispere violet S3RL, yellow brown S2RFL, red W4BS, yellow SRLP and red S3B by brown rot fungi. Pak J Agric Sci 54(2):407–413

    Google Scholar 

  • Newcombe D, Paszcynsky A, Gajewska W, Kroger M, Feis G, Crawford R (2002) Production of small molecular weight catalyst and the mechanism of trinitrotoluene degradation by several Gloeophyllum species. Enzyme Microb Technol 30:506–517

    Article  CAS  Google Scholar 

  • Park N, Park SS (2014) Purification and characterization of a novel laccase from Fomitopsis pinicola mycelia. Int J Biol Macromol 70:583–589

    Article  CAS  Google Scholar 

  • Parshetti GK, Telke AA, Kalyani DC, Govindwar SP (2010) Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. J Hazard Mater 176:503–509

    Article  CAS  Google Scholar 

  • Peternel IT, Koprivanac N, Božić AML, Kušić HM (2007) Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. J Hazard Mater 148(1):477–484

    Article  CAS  Google Scholar 

  • Purnomo AS (2017) Microbe-assisted degradation of aldrin and dieldrin. In: Singh SN (ed) Microbe-induced degradation of pesticides, 1st edn. Springer, Basel, pp 1–22

    Google Scholar 

  • Purnomo AS, Kamei I, Kondo R (2008) Degradation of 1,1,1-trichlro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 105:614–621

    Article  CAS  Google Scholar 

  • Purnomo AS, Koyama F, Mori T, Kondo R (2010a) DDT degradation potential of cattle manure compost. Chemosphere 80(6):619–624

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010b) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegrad 64(5):397–402

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Kondo R (2010c) Involvement of Fenton reaction in DDT degradation by brown rot fungi. Int Biodet Biodeg 64:560–565

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Takagi K, Kondo R (2011a) Bioremediation of DDT contaminated soil using brown-rot fungi. Int Biodet Biodeg 65:691–695

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Kamei I, Kondo R (2011b) Basic studies and applications on bioremediation of DDT: a review. Int Biodet Biodeg 65(7):921–930

    Article  CAS  Google Scholar 

  • Purnomo AS, Mori T, Putra SR, Kondo R (2013) Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int Biodet Biodeg 82:40–44

    Article  CAS  Google Scholar 

  • Purnomo AS, Putra SR, Shimizu K, Kondo R (2014) Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula. Environ Sci Pollut Res 21:11305–11312

    Article  CAS  Google Scholar 

  • Purnomo AS, Nawfa R, Martak F, Shimizu K, Kamei I (2017a) Biodegradation of aldrin and dieldrin by the white-rot fungus Pleurotus ostreatus. Curr Microbiol 74(3):320–324

    Article  CAS  Google Scholar 

  • Purnomo AS, Ashari K, Hermansyah F (2017b) Evaluation of the synergistic effect of mixed cultures of white-rot fungus Pleurotus ostreatus and biosurfactant-producing bacteria on DDT biodegradation. J Microbiol Biotechnol 27(7):1306–1315

    Article  CAS  Google Scholar 

  • Rafii F, Hall JD, Cerniglia CE (1997) Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract. Food Chem Toxic 35(9):897–901

    Article  CAS  Google Scholar 

  • Ramirez C, Saldana A, Hernandez B, Acero R, Guerra R, Garcia-Segura S, Brillas E, Peralta-Hernandez JM (2013) Electrochemical oxidation of methyl orange azo dye at pilot flow plant using BDD technology. J Indus Eng Chem 19:571–579

    Article  CAS  Google Scholar 

  • Rizqi HD, Purnomo AS (2017) The ability of brown-rot fungus Daedalea dickinsii to decolorize and transform methylene blue dye. World J Microbiol Biotechnol 33(5):92

    Article  CAS  Google Scholar 

  • Roy A, Adhikari B, Majumder SB (2013) Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber. Ind Eng Chem Res 52(19):6502–6512

    Article  CAS  Google Scholar 

  • Sariwati A, Purnomo AS (2018) The effect of Pseudomonas aeruginosa addition on 1,1,1 Trichloro 2,2 bis (4 chlorophenyl) ethane DDT Biodegradation by Brown-Rot fungus Fomitopsis pinicola. Indones J Chem 18(1):75–81

    Article  CAS  Google Scholar 

  • Sariwati A, Purnomo AS, Kamei I (2017) Abilities of co-cultures of brown-rot fungus Fomitopsis pinicola and Bacillus subtilis on biodegradation DDT. Curr Microbiol 74:1068–1069

    Article  CAS  Google Scholar 

  • Saroj S, Kumar K, Pareek N, Prasad R, Singh RP (2014) Biodegradation of azo dyes Acid Red 183, Direct Blue 15 and Direct Red 75 by the isolate Penicillium oxalicum SAR-3. Chemosphere 107:240–248

    Article  CAS  Google Scholar 

  • Schlosser D, Fahr K, Karl W, Wetzstein HG (2000) Hydroxylated metabolites of 2,4-dichlorophenol imply a Fenton-type reaction in Gloeophyllum striatum. App Environ Microb 66:2479–2483

    Article  CAS  Google Scholar 

  • Seesuriyachan P, Takenaka S, Kuntiya A, Klayraung S, Murakami S, Aoki K (2007) Metabolism of azo dyes by Lactobacillus casei TISTR 1500 and effects of various factors on decolorization. Water Res 41:985–992

    Article  CAS  Google Scholar 

  • Setyo PA, Dwi RH, Sri F, Sulistyo PH, Ichiro K (2018) Effects of bacterium Ralstonia pickettii addition on DDT biodegradation by Daedalea dickinsii. Res J Chem Environ 22(Special issue II):151–156

    Google Scholar 

  • Shah MP, Patel KA, Darji A (2013) Microbial degradation and decolorization of methyl Orange dye by an application of Pseudomonas spp. ETL-1982. Int J Environ Bioremediat Biodegrad 1:26–36

    Google Scholar 

  • Singh RL, Singh PK, Singh RP (2015) Enzymatic decolorization and degradation of azo dyes-a review. Int Biodeterior Biodegrad 104:21–31

    Article  CAS  Google Scholar 

  • Singla P, Sharma M, Pandey OP, Singh K (2014) Photocatalytic degradation of azo dyes using Zn-doped and undoped TiO2 nanoparticles. Appl Phys A 116(1):371–378

    Article  CAS  Google Scholar 

  • Sudha M, Saranya A, Selvakumar G, Sivakumar N (2014) Microbial degradation of azo dyes: a review. Int J Curr Microbiol App Sci 3:670–690

    CAS  Google Scholar 

  • Takao S (1965) Organic acid production by Basidiomycetes. I. Screening of acid-producing strains. App Microbiol 13(5):732–737

    CAS  Google Scholar 

  • Thao TP, Kao HC, Juang RS, Lan JCW (2013) Kinetic characteristics of biodegradation of methyl orange by Pseudomonas putida mt2 in suspended and immobilized cell systems. J Taiwan Inst Chem Eng 44:780–785

    Article  CAS  Google Scholar 

  • Vasdev K (2011) Decolorization of triphenylmethane dyes by six white-rot fungi isolated from nature. J Bioremed Biodegrad 2(5):61–66

    Article  CAS  Google Scholar 

  • Wahyuni S, Suhartono MT, Khaeruni A, Purnomo AS, Asranudin Holilah, Riupassa PA (2016) Purification and characterization of thermostable chitinase from Bacillus SW41 for chitin oligomer production. Asian J Chem 28(12):2731–2736

    Article  CAS  Google Scholar 

  • Wahyuni S, Khaeruni A, Purnomo AS (2017) Characterization of mannanase isolated from corncob waste bacteria. Asian J Chem 29(5):1119–1120

    Article  CAS  Google Scholar 

  • Wetzstein HG, Schemer N, Karl W (1997) Degradation of fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. App Environ Microb 63:4272–4281

    CAS  Google Scholar 

  • Wetzstein HG, Stadler M, Tichy HV, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. App Environ Microb 65:1556–1563

    CAS  Google Scholar 

  • Wood PM (1994) Pathways for production of Fenton’s reagent by wood-rooting fungi. FEMS Microb Rev 13:313–320

    Article  CAS  Google Scholar 

  • Wu J, Doan H, Upreti S (2008) Decolorization of aqueous textile reactive dye by ozone. Chem Eng J 142:156–160

    Article  CAS  Google Scholar 

  • Yildirim AÖ, Gül Ş, Eren O, Kuşvuran E (2011) A comparative study of ozonation, homogeneous catalytic ozonation, and photocatalytic ozonation for C.I. Reactive Red 194 azo dye degradation. CLEAN Soil Air Water 39(8):795–805

    Article  CAS  Google Scholar 

  • Zeng G, Cheng M, Huang D, Lai C, Xu P, Wei Z, Li N, Zhang C, He X, He Y (2015) Study of the degradation of methylene blue by semi-solid-state fermentation of agricultural residues with Phanerochaete chrysosporium and reutilization of fermented residues. Waste Manag 38:424–430

    Article  CAS  Google Scholar 

  • Zhu GC, Shou JX, Qian JW, Xin HZ, Qiu MQ (2014) Degradation of Methylene Blue by Fenton-like reaction. J Adv Mater Res 1065–1069:3127–3130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the competency-based research Grant No. 1/E/KPT/2018 from the Directorate General of Strengthening Research and Development, Ministry of Research, Technology and Higher Education, Indonesia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Purnomo.

Additional information

Editorial responsibility: J Aravind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purnomo, A.S., Mauliddawati, V.T., Khoirudin, M. et al. Bio-decolorization and novel bio-transformation of methyl orange by brown-rot fungi. Int. J. Environ. Sci. Technol. 16, 7555–7564 (2019). https://doi.org/10.1007/s13762-019-02484-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02484-3

Keywords

Navigation