Skip to main content
Log in

Modification of magnetized MCM-41 by pyridine groups for ultrasonic-assisted dispersive micro-solid-phase extraction of nickel ions

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Nickel is one of the heavy metals, which is discharged to ecosystem by normal process and human actions. Nickel is regarded as crucial ion in the living creature and is a component of protein structure at very low level. Dispersive micro-solid-phase extraction assisted by ultrasonic waves with a new magnetic material using pyridine-functionalized magnetic nanoporous sorbent was utilized for detection of nickel ions at trace levels in real matrices. Magnetized nanoporous silica (MCM-41) was modified with pyridine groups, and the structure of prepared magnetic nanoporous sorbent was confirmed by instrumental techniques. The applied techniques were Fourier-transformed infrared spectroscopy, X-ray powder diffraction, transmission electron microscopy and thermogravimetry–differential thermal analysis. Preconcentrated nickel using the mentioned sample preparation procedure was monitored by GFAAS at ng L−1 concentrations. To optimize the effect of significant parameters on sorption and desorption of nickel ions using the applied sample preparation procedure, Box–Behnken design was utilized. The influencing parameters in the sorption step are: sorption amount (mg), pH of solution and sonication time (min), and these parameters for desorption step are: volume of eluent (mL), concentration of eluent (mol L−1) and sonication time (min). Optimized data for parameters that obtained by Box–Behnken design were: sample’s pH: 7.5, sonication time for sorption: 8 min, sorbent amount: 24 mg, desorption solvent: HCl 1.2 mol L−1, eluent volume: 420 μL and time of sonication for desorption, 8 min. Relative standard deviation and method detection limit for nickel monitoring under optimized conditions by UA-d-μSPE were observed to be < 6% and 0.008 μg L−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasi S, Roushani M, Khani H, Sahraei R, Mansouri G (2015) Synthesis and application of ion-imprinted polymer nanoparticles for the determination of nickel ions. Spectrochim Acta Mol Biomol Spectrosc 140:534–543

    Article  CAS  Google Scholar 

  • Abulhassani J, Manzoori JL, Amjadi M (2010) Hollow fiber based-liquid phase microextraction using ionic liquid solvent for preconcentration of lead and nickel from environmental and biological samples prior to determination by electrothermal atomic absorption spectrometry. J Hazard Mater 176:481–486

    Article  CAS  Google Scholar 

  • Arpa Sahin C, Efecinar M, Satiroglu N (2010) Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of nickel and manganese ions in water and food samples. J Hazard Mater 176:672–677

    Article  CAS  Google Scholar 

  • Behbahani M, Taghizadeh M, Bagheri A, Hosseini H, Salarian M, Tootoonchi A (2012) A nanostructured ion-imprinted polymer for the selective extraction and preconcentration of ultra-trace quantities of nickel ions. Microchim Acta 178:429–437

    Article  CAS  Google Scholar 

  • Behbahani M, Omidi F, Ghanbari Kakavandi M, Hesam G (2017) Selective and sensitive determination of silver ions at trace levels based on ultrasonic- assisted dispersive solid- phase extraction using ion- imprinted polymer nanoparticles. Appl Organomet Chem 31:e3758

    Article  CAS  Google Scholar 

  • Behbahani M, Veisi A, Omidi F, Noghrehabadi A, Esrafili A, Ebrahimi MH (2018) Application of a dispersive micro- solid- phase extraction method for pre- concentration and ultra- trace determination of cadmium ions in water and biological samples. Appl Organomet Chem 32:e4134

    Article  CAS  Google Scholar 

  • Bencko V (1982) Nickel: a review of its occupational and environmental toxicology. J Hyg Epidemiol Microbiol Immunol 27(2):237–247

    Google Scholar 

  • Costa M, Davidson TL, Chen H, Ke Q, Zhang P, Yan Y, Huang C, Kluz T (2005) Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat Res 592(1):79–88

    Article  CAS  Google Scholar 

  • Dadfarnia S, McLeod CW (1994) On-line trace enrichment and determination of uranium in waters by flow injection inductively coupled plasma mass spectrometry. Appl Spectrosc 48(11):1331–1336

    Article  CAS  Google Scholar 

  • Dadfarnia S, Haji Shabani AM, Tamaddon F, Rezaei M (2005) Immobilized salen (N, N′-bis (salicylidene) ethylenediamine) as a complexing agent for on-line sorbent extraction/preconcentration and flow injection–flame atomic absorption spectrometry. Anal Chim Acta 539(1):69–75

    Article  CAS  Google Scholar 

  • Dadfarnia S, Shakerian F, Haji Shabani AM (2013) Suspended nanoparticles in surfactant media as a microextraction technique for simultaneous separation and preconcentration of cobalt, nickel and copper ions for electrothermal atomic absorption spectrometry determination. Talanta 106:150–154

    Article  CAS  Google Scholar 

  • Ebrahimzadeh H, Behbahani M, Yamini Y, Adlnasab L, Asgharinezhad AA (2013) Optimization of Cu (II)-ion imprinted nanoparticles for trace monitoring of copper in water and fish samples using a Box-Behnken design. React Funct Polym 73:23–29

    Article  CAS  Google Scholar 

  • Eisapour M, Shemirani F, Majidi B, Baghdadi M (2012) Ultrasound assisted cold-induced aggregation: an improved method for trace determination of volatile phenol. Microchim Acta 177:349–355

    Article  CAS  Google Scholar 

  • Ghanbari Kakavandi M, Behbahani M, Omidi F, Hesam G (2017) Application of ultrasonic assisted-dispersive solid phase extraction based on ion-imprinted polymer nanoparticles for preconcentration and trace determination of lead ions in food and water samples. Food Anal Methods 10:2454–2466

    Article  Google Scholar 

  • Göde C, Yola ML, Yılmaz A, Atar N, Wang S (2017) A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: application to simultaneous determination of Fe(III), Cd(II) and Pb(II) ions. J Colloid Interface Sci 508:525–531

    Article  CAS  Google Scholar 

  • Gupta VK, Yola ML, Atar N, Solak AO, Uzun L, Üstündağ Z (2013a) Electrochemically modified sulfisoxazole nanofilm on glassy carbon for determination of cadmium(II) in water samples. Electrochim Acta 105:149–156

    Article  CAS  Google Scholar 

  • Gupta VK, Yola ML, Atar N, Ustundağ Z, Solak AO (2013b) A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochim Acta 112:541–548

    Article  CAS  Google Scholar 

  • Hoogboom J, Garcia PML, Otten MB, Elemans JAAW, Sly J, Lazarenko SV, Rasing T, Rowan AE, Nolte RJM (2005) Unable command layers for liquid crystal alignment. J Am Chem Soc 127:11047–11052

    Article  CAS  Google Scholar 

  • Hu E, Cheng H (2013) Rapid extraction and determination of atrazine and its degradation products from microporous mineral sorbents using microwave-assisted solvent extraction followed by ultra-HPLC-MS/MS. Microchim Acta 180:703–710

    Article  CAS  Google Scholar 

  • Inspectorate DW (2010) What are the drinking water standards. Drinking Water Inspectorate, London

    Google Scholar 

  • Iraji A, Afzali D, Mostafavi A, Fayazi M (2012) Ultrasound- assisted emulsification microextraction for separation of trace amounts of antimony prior to FAAS determination. Microchim Acta 176:185–192

    Article  CAS  Google Scholar 

  • Jiang H, Qin Y, Hu B (2008) Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta 74:1160–1165

    Article  CAS  Google Scholar 

  • Jiang J, Gou C, Luo J, Yi C, Liu X (2012) A novel highly selective colorimetric sensor for Ni (II) ion using coumarin derivatives. Inorg Chem Commun 15:12–15

    Article  CAS  Google Scholar 

  • Journeay WS, Goldman RH (2014) Occupational handling of nickel nanoparticles: a case report. Am J Ind Med 57(9):1073

    Article  Google Scholar 

  • Kanchi S, Sabela M, Singh P, Bisetty K (2017) Multivariate optimization of differential pulse polarographic–catalytic hydrogen wave technique for the determination of nickel(II) in real samples. Arab J Chem 10:S2260

    Article  CAS  Google Scholar 

  • Kasprzak KS, Sunderman FW, Salnikow K (2003) Nickel carcinogenesis. Mutat Res 533(1):67–70

    Article  CAS  Google Scholar 

  • Kendzia B, Pesch B, Koppisch D, Van Gelder R, Pitzke K, Zschiesche W, Behrens T, Weiss T, Siemiatycki J, Lavoué J, Jöckel KH, Stamm R, Brüning T (2017) Modelling of occupational exposure to inhalable nickel compounds. J Expo Sci Environ Epidemiol 27(4):427–433

    Article  CAS  Google Scholar 

  • Khan M, Yilmaz E, Sevinc B, Sahmetlioglu E, Shah J, Jan MR, Soylak M (2016) Preparation and characterization of magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) nanocomposite for vortex assisted magnetic solid phase extraction of some metal ions. Talanta 146:130–137

    Article  CAS  Google Scholar 

  • Khazaeli E, Haddadi H, Zargar B, Hatamie A, Semnani A (2017) Ni(II) analysis in food and environmental samples by liquid–liquid microextraction combined with electro-thermal atomic absorption spectrometry. Michrochem J 133:311–319

    Article  CAS  Google Scholar 

  • Khezeli T, Daneshfar A (2017) Development of dispersive micro-solid phase extraction based on micro and nano sorbents. Trends Anal Chem TrAC 89:99

    Article  CAS  Google Scholar 

  • Lemos VA, Novaes CG, Lima AS, Vieira DR (2008) Flow injection preconcentration system using a new functionalized resin for determination of cadmium and nickel in tobacco samples. J Hazard Mater 155:128–134

    Article  CAS  Google Scholar 

  • Liu Y, Karkamkar A, Pinnavaia TJ (2001) Redirecting the assembly of hexagonal MCM-41 into cubic MCM-48 from sodium silicate without the use of an organic structure modifier. Chem Commun 18:1822–1823

    Article  Google Scholar 

  • Lv F, Gan N, Huang J, Hu F, Cao Y, Zhou Y, Dong Y, Zhang L, Jiang S (2017) A poly-dopamine based metal-organic framework coating of the type PDA-MIL-53(Fe) for ultrasound-assisted solid-phase microextraction of polychlorinated biphenyls prior to their determination by GC-MS. Microchim Acta 184:2561–2568

    Article  CAS  Google Scholar 

  • Narin I, Soylak M (2003) The uses of 1-(2-pyridylazo) 2-naphtol (PAN) impregnated Ambersorb 563 resin on the solid phase extraction of traces heavy metal ions and their determinations by atomic absorption spectrometry. Talanta 60(1):215–221

    Article  CAS  Google Scholar 

  • Parvizi S, Behbahani M, Zeraatpisheh F, Esrafili A (2018) Preconcentration and ultra-trace determination of hexavalent chromium ions using tailor-made polymer nanoparticles coupled with graphite furnace atomic absorption spectrometry: ultrasonic assisted-dispersive solid-phase extraction. New J Chem 42:10357–10365

    Article  CAS  Google Scholar 

  • Poonkothai M, Vijayavathi BS (2012) Nickel as an essential element and a toxicant. Int J Environ Sci 1:285–288

    Google Scholar 

  • Schaumlöffel D, Trace Elem J (2012) Nickel species: analysis and toxic effects. Med Biol 26(1):1–6

    Google Scholar 

  • Shamsipur M, Poursaberi T, Karami AR, Hosseini M, Momeni A, Alizadeh N, Yousefi M, Ganjali MR (2004) Development of a new fluorimetric bulk optode membrane based on 2, 5-thiophenylbis (5-tert-butyl-1, 3-benzexazole) for nickel (II) ions. Anal Chim acta 501(1):55–60

    Article  CAS  Google Scholar 

  • Soylak M, Elci L, Dogan M (1999) Flame atomic absorption spectrometric determination of cadmium, cobalt, copper, lead and nickel in chemical grade potassium salts after an enrichment and separation procedure. J Trace Microprobe Tech 17:149–156

    CAS  Google Scholar 

  • Stalikas C, Fiamegos Y, Sakkas V, Albanis T (2009) Developments on chemometric approaches to optimize and evaluate microextraction. J Chromatogr A 1216:175

    Article  CAS  Google Scholar 

  • Stanisz E, Krawczyk-Coda M (2017) ZnO nanoparticles as an adsorbent in ultrasound assisted dispersive micro solid-phase extraction combined with high-resolution continuum source electrothermal atomic absorption spectrometry for determination of trace germanium in food samples. Microchem J 132:136–142

    Article  CAS  Google Scholar 

  • Tuzen M, Soylak M, Citak D, Ferreira HS, Korn MGA, Bezerra MA (2009) A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry. J Hazard Mater 162:1041–1045

    Article  CAS  Google Scholar 

  • Yari A, Azizi S, Kakanejadifard A (2006) An electrochemical Ni (II)-selective sensor-based on a newly synthesized dioxime derivative as a neutral ionophore. Sens Actuators B 119(1):167–173

    Article  CAS  Google Scholar 

  • Yola ML, Atar N, Qureshi MS, Üstündağ Z, Solak AO (2012) Electrochemically grafted etodolac film on glassy carbon for Pb(II) determination. Sens Actuators B Chem 171–172:1207–1215

    Article  CAS  Google Scholar 

  • Yola ML, Eren T, İlkimen H, Atar N, Yenikaya C (2014) A sensitive voltammetric sensor for determination of Cd(II) in human plasma. J Mol Liq 197:58–64

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the Behbahan Faculty of Medical Sciences for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Behbahani.

Additional information

Editorial responsibility: Necip Atar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 810 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behbahani, M., Zarezade, V., Veisi, A. et al. Modification of magnetized MCM-41 by pyridine groups for ultrasonic-assisted dispersive micro-solid-phase extraction of nickel ions. Int. J. Environ. Sci. Technol. 16, 6431–6440 (2019). https://doi.org/10.1007/s13762-018-2052-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-2052-9

Keywords

Navigation