Skip to main content
Log in

Removal of heavy metals from wastewater using infiltration-percolation process and adsorption on activated carbon

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Heavy metal pollution has become one of the most serious environmental problems nowadays. The removal of heavy metals from wastewaters has attracted a considerable attention because of their adverse effects on public health and ecosystems. The main objective of this work was to investigate the efficiency of the coupling of infiltration-percolation process with adsorption on activated carbon in the removal of heavy metals contained in urban wastewater effluents. The adsorption of heavy metals on a commercial sample of activated carbon was studied in a static mode. Several laboratory experiments made it possible to distinguish the optimum quantity of powdered activated carbon necessary to remove a large range of heavy metals. Results showed that the equilibrium of the adsorption was reached very quickly for cadmium (Cd2+), i.e., after 15 min of contact with the activated carbon. On the other hand, the equilibrium of zinc (Zn2+), lead (Pb2+) and copper (Cu2+) was achieved after 45 min. The withdrawal rates were 70.77% for Zn2+, 64.75% for Pb2+, 67.07% for Cu2+ and 78.42% for Cd2+. The adsorption isotherms determined for Zn2+, Pb2+, Cu2+ were of type I, while the shape of the Cd2+ curve showed a type II isotherm. These isotherms confirm the capacity of the powdered activated carbon to adsorb cadmium better than the other studied heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aaki R (2012) Elimination des métaux lourds (Cd, Pb, Cr, Zn et As) des eaux usées industrielles et naturelles par le procédé d’infiltration-percolation. In: Doctoral Thesis, Ibn Zohr University, Agadir, p 149

  • Akadar B (2014) Evaluation of effectiveness of domestic wastewater treatment by infiltration through sand and pozzolana in PVC columns. Int J Environ Res 8(3):515–522

    Google Scholar 

  • Al JAF (1999) Wastewater reuse in France: water quality standards and wastewater treatment technologies. Water Sci Technol 40:4–5

    Google Scholar 

  • Asano T, Cotruvo JA (2004) Groundwater recharge with reclaimed municipal wastewater: Health and regulatory considerations. Water Res 38(8):1941–1951

    Article  CAS  Google Scholar 

  • Babié B, Milonjié S, Polovina M, Cupié S, Kaludjerovié B (2002) Adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth. Carbon 40(7):1109–1115

    Article  Google Scholar 

  • Bali M (2012) Etude expérimentale et modélisation du traitement des eaux usées domestiques par procédé d’infiltration-percolation en zone aride. In: Doctoral Thesis, University of Tunis II, Tunisia, p 189

  • Bali M, Gueddari M, Boukchina R (2011) Removal of contaminants and pathogens from secondary effluents using intermittent sand filters. Water Sci Technol 64(10):2038. https://doi.org/10.2166/wst.2011.448

    Article  CAS  Google Scholar 

  • Bali M, Jridi H, Farhat S, Louhichi B, Boukchina R (2016) Treatment of secondary effluents by infiltration-percolation process using sand fortified with activated charcoal. Int J Environ Sci Technol 14(6):1209–1216. https://doi.org/10.1007/s13762-016-1222-x

    Article  CAS  Google Scholar 

  • Bortoleto GG, Macarovscha GT, Cadore S (2004) Determination of cadmium by flame-atomic absorption spectrometry after preconcentration on silica gel modified with cupferron. J Braz Chem Soc 15:313

    Article  CAS  Google Scholar 

  • Boulkrah H (2008) Etude comparative de l’adsorption des ions plomb sur différents adsorbants. Memory of Magister. Algéria University, Algeria, p 139p

    Google Scholar 

  • Boussahel R (2001) Recherche et dosage des pesticides présents dans l’eau en vue de leur elimination. In: Doctoral Thesis, Limoges University, Limoges

  • Bouziane N (2007) Élimination du 2 mercaptobenzothiazole par voie photochimique et par adsorption sur la bentonite et le charbon actif en poudre. In: Doctoral Thesis, Algeria University, Algeria, p 184

  • Brunauer S (1944) The adsorption of gases and vapors. Oxford University Press, Scientific Research Publish, Scientific Research, Oxford

    Google Scholar 

  • Creanga M (2007) Procédé AD-OX d’élimination de polluants organiques non biodégradables (par adsorption puis oxydation catalytique). In: Doctoral Thesis, National Polytechnic Institute of Toulouse, France, p 74

  • Dabrowski A (2001) Adsorption from theory to practice. Adv Colloid Interface Sci 93:135–224

    Article  CAS  Google Scholar 

  • Escher B, Leusch F (2011) Bioanalytical tools in water quality assessment. Book Media Rev 21:52. https://doi.org/10.1021/ed021

    Article  Google Scholar 

  • Göde C, Yola ML, Yılmaz A, Atar N, Wang S (2017) A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: application to simultaneous determination of Fe(III), Cd(II) and Pb(II) ions. J Colloid Interface Sci 508:525–531

    Article  CAS  Google Scholar 

  • Guediri A (2000) Etude expérimentale du traitement des eaux usées urbaines par le procédé d’infiltration percolation. In: Application to the Gabes D.E.A region of Applied Geology in the environment. University of Tunis II, Tunisia, p 105

  • Gupta VK, Yola ML, Atar N, Solak AO, Uzunh L, Üstündag Z (2013a) Electrochemically modified sulfisoxazole nanofilm on glassy carbon for determination of cadmium(II) in water samples. Electrochim Acta 105:149–156

    Article  CAS  Google Scholar 

  • Gupta VK, Yola ML, Atar N, Ustundağ Z, Solak AO (2013b) A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochim Acta 112:541–548

    Article  CAS  Google Scholar 

  • Houas A, Bakir I, Ksibi M, Elaloui E (1999) Étude de l’élimination de bleu de méthylène dans l’eau par le charbon actif commercial CECA40. J Phys Chem Phys Biol Chem 96(3):479–486

    CAS  Google Scholar 

  • IUPAC (1985) Recommendations. Pure Appl Chem 57:603

    Article  Google Scholar 

  • Jankiewicz B, Ptaszynski B, Wieczorek M (2000) Spectrophotometric determination of cadmium (II) in soil of allotment gardens in Lodz. Pol J Environ Stud 9:83

    CAS  Google Scholar 

  • Jankowska H, Swiatkowski A, Choma J, Horwood Ellis, Sussex West, England Prentice-Hall, Englewood Cliffs NJ (1991) Active carbon. AIChE J 38:12. https://doi.org/10.1002/aic.690381220

    Article  Google Scholar 

  • Lacoue-Labarthe T (2007) Incorporation des métaux dans les oeufs de la seiche commune Sepia officinalis et effets potentiels sur les fonctions digestives et immunitaires. In: Doctoral Thesis, The Rochelle University, Rochelle, p 200

  • Liao HC, Jiang SJ (1999) Determination of cadmium, mercury and lead in coal fly ash by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim Acta Part B 54:1233

    Article  Google Scholar 

  • Margot J, Magnet A, Thonney D, Chèvre N, Alencastro D, Felippe L, Rossi L (2011) Traitement des micropolluants dans les eaux usées. In: Final report on the pilot tests at the STEP from Vidy, Lausanne

  • Nadav I, Tarchitzky J, Chen Y (2017) Water repellency reduction using soil heating in infiltration ponds of a wastewater soil aquifer treatment (SAT). J Plant Nutr Soil Sci 180(2):142–152

    Article  CAS  Google Scholar 

  • Oladoja NA, Ademoroti CMA (2006) The use of fortified soil-clay as on-site system for domestic wastewater purification. Water Res 40(3):613–620. https://doi.org/10.1016/j.watres.2005.11.031

    Article  CAS  Google Scholar 

  • Slasli MA (2002) Modélisation de l’adsorption par les charbons microporeux: Approches théorique et expérimentale. In: Doctoral Thesis, Neuchâtel University, Neuchâtel

  • Stevik KT, Kari A, Ausland G, Fredrik Hanssen J (2004) Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res 38(6):1355–1367

    Article  CAS  Google Scholar 

  • Varrault G (2011) Les contaminants dans les milieux recepteurs sous forte pression urbaines. Habilitation à diriger des recherches. Paris University, Paris, p 90

    Google Scholar 

  • Yola ML, Atar N, Qureshi MS, Üstündağ Z, Solak AO (2012) Electrochemically grafted etodolac film on glassy carbon for Pb(II) determination. Sens Actuators B: Chem 171–172:1207–1215

    Article  CAS  Google Scholar 

  • Yola ML, Eren T, İlkimen H, Atar N, Yenikaya C (2014) A sensitive voltammetric sensor for determination of Cd(II) in human plasma. J Mol Liq 197:58–64

    Article  CAS  Google Scholar 

  • Ziati M, Hazourli S, Nouacer S, Zohra Khelaifia F, Nait N (2013) Adsorption de L’arsenic (III) sur Résidu naturel ligno-Cellulosique valorisé en Charbon actif: exemple des noyaux de dattes. Leban Sci J 14(1):73–85

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Unit of Applied Hydro-Sciences of Gabès for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bali.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bali, M., Tlili, H. Removal of heavy metals from wastewater using infiltration-percolation process and adsorption on activated carbon. Int. J. Environ. Sci. Technol. 16, 249–258 (2019). https://doi.org/10.1007/s13762-018-1663-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1663-5

Keywords

Navigation