Skip to main content
Log in

Photocatalytic performance of TiO2 and WO3/TiO2 nanoparticles coated on urban green infrastructure materials in removing nitrogen oxide

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This study investigated the performance of UV light active TiO2 and UV–visible light active WO3/TiO2 nanoparticles as air purifying materials that can be potentially applied to urban green infrastructures such as rain gardens and pervious pavements. Using a laboratory-scale continuous gas flow photoreactor, the removal efficiency of gaseous nitrogen oxide (NO x ) by two different photocatalytic nanoparticles coated on natural zeolites and pervious concrete blocks was evaluated. The results showed that the TiO2- and WO3/TiO2-coated zeolites are excellent photoactive materials providing enhanced air purification function (~95% removal efficiency of NO x ) under UV and UV–visible light irradiation, respectively. In contrast, both of the TiO2- and WO3/TiO2-coated pervious concrete blocks showed a measurable NO x removal (~60%) only under UV irradiation, whereas the visible light activity of the WO3/TiO2-coated concrete block was significantly reduced (~20%) mainly due to the decrease in the photocatalytic reaction sites for visible light. This study revealed the potential utility of photocatalytic nanoparticles in improving urban air quality, in the form of the surface component of various urban infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anandan S, Sivasankar T, Lana-Villarreal T (2014) Synthesis of TiO2/WO3 nanoparticles via sonochemical approach for the photocatalytic degradation of methylene blue under visible light illumination. Ultrason Sonochem 21(6):1964–1968

    Article  CAS  Google Scholar 

  • Arora SK, Foley RW, Youtie J, Shapira P, Wiek A (2014) Drivers of technology adoption—the case of nanomaterials in building construction. Technol Forecast Soc Change 87:232–244

    Article  Google Scholar 

  • Asadi S, Hassan M, Kevern J, Rupnow T (2012) Development of photocatalytic pervious concrete pavement for air and storm water improvements. Transp Res Rec J Transp Res Board 2290:161–167

    Article  CAS  Google Scholar 

  • Baek S-O, Kim Y-S, Perry R (1997) Indoor air quality in homes, offices and restaurants in Korean urban areas—indoor/outdoor relationships. Atmos Environ 31(4):529–544

    Article  CAS  Google Scholar 

  • Bowering N, Croston D, Harrison PG, Walker GS (2007) Silver modified Degussa P25 for the photocatalytic removal of nitric oxide. Int J Photoenergy 2007:90752. doi:10.1155/2007/90752

  • Corma A, Garcia H (2004) Zeolite-based photocatalysts. Chem Commun 13:1443–1459

    Article  Google Scholar 

  • Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice-Hall Inc., Englewood Cliffs, pp 167–171

    Google Scholar 

  • Dalton JS, Janes PA, Jones NG, Nicholson JA, Hallam KR, Allen GC (2002) Photocatalytic oxidation of NO x gases using TiO2: a surface spectroscopic approach. Environ Pollut 120(2):415–422

    Article  CAS  Google Scholar 

  • De Lange MF, Vlugt TJH, Gascon J, Kapteijn F (2014) Adsorptive characterization of porous solids: error analysis guides the way. Microporous Mesoporous Mater 200:199–215

    Article  Google Scholar 

  • Devahasdin S, Fan C Jr, Li K, Chen DH (2003) TiO2 photocatalytic oxidation of nitric oxide: transient behavior and reaction kinetics. J Photochem Photobiol A Chem 156:161–170

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1(1):1–21

    Article  CAS  Google Scholar 

  • Guo G, Hu Y, Jiang S, Wei C (2012) Photocatalytic oxidation of NO x over TiO2/HZSM-5 catalysts in the presence of water vapor: effect of hydrophobicity of zeolites. J Hazard Mater 223–224:39–45

    Article  Google Scholar 

  • Guo Q, Zhou C, Ma Z, Ren Z, Fan H, Yang X (2016) Elementary photocatalytic chemistry on TiO2 surfaces. Chem Soc Rev 45(13):3701–3730

    Article  CAS  Google Scholar 

  • Lasek J, Yu Y-H, Wu JCS (2013) Removal of NO x by photocatalytic processes. J Photochem Photobiol C 14:29–52

    Article  CAS  Google Scholar 

  • Liu S, Lim M, Amal R (2014) TiO2-coated natural zeolite: rapid humic acid adsorption and effective photocatalytic regeneration. Chem Eng Sci 105:46–52

    Article  CAS  Google Scholar 

  • Ma J, Wu H, Liu Y, He H (2014) Photocatalytic removal of NO x over visible light responsive oxygen-deficient TiO2. J Phys Chem C 118(14):7434–7441

    Article  CAS  Google Scholar 

  • Maggos T, Bartzis JG, Leva P, Kotzias D (2007) Application of photocatalytic technology for NO x removal. Appl Phys A 89(1):81–84

    Article  CAS  Google Scholar 

  • Mendoza JA, Kim HK, Park HK, Park KY (2012) Photocatalytic reduction of carbon dioxide using Co3O4 nanoparticles under visible light irradiation. Korean J Chem Eng 29(11):1483–1486

    Article  CAS  Google Scholar 

  • Mendoza JA, Lee DH, Kang J-H (2016) Photocatalytic removal of NO x using TiO2-coated zeolite. Environ Eng Res 21(3):291–296

    Article  Google Scholar 

  • Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13(3):169–189

    Article  CAS  Google Scholar 

  • Nguyen NH, Bai H (2014) Photocatalytic removal of NO and NO2 using titania nanotubes synthesized by hydrothermal method. J Environ Sci 26(5):1180–1187

    Article  CAS  Google Scholar 

  • Ohama Y, Van Gemert D (2011) Applications of titanium dioxide photocatalysis to construction materials (RILEM state of the art reports), vol 5. Springer, Dordrecht

    Book  Google Scholar 

  • Ohtani B (2010) Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J Photochem Photobiol C 11(4):157–178

    Article  CAS  Google Scholar 

  • Pirkanniemi K, Sillanpää M (2002) Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 48(10):1047–1060

    Article  CAS  Google Scholar 

  • Teleki A, Wengeler R, Wengeler L, Nirschl H, Pratsinis SE (2008) Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion. Powder Technol 181(3):292–300

    Article  CAS  Google Scholar 

  • Thimijan RW, Heins RD (1983) Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortScience 18(6):818–822

    Google Scholar 

  • Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 9(2):731–737

    Article  CAS  Google Scholar 

  • Vogel JR, Moore TL, Coffman RR, Rodie SN, Hutchinson SL, McDonough KR, McLemore AJ, McMaine JT (2015) Critical review of technical questions facing low impact development and green infrastructure: a perspective from the great plains. Water Environ Res 87(9):849–862

    Article  CAS  Google Scholar 

  • Yu QL, Brouwers HJH (2009) Indoor air purification using heterogeneous photocatalytic oxidation. Part I: experimental study. Appl Catal B 92(3–4):454–461

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant (No. 14CTAP-C086804-01) from the Technology Advancement Research Program funded by the Ministry of Land, Infrastructure and Transport (MLIT) of the Korean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-H. Kang.

Additional information

Editorial responsibility: U.W. Tang.

This research was conducted at Dongguk University—Seoul, Republic of Korea, from October 2015 to October 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza, J.A., Lee, D.H., Kim, LH. et al. Photocatalytic performance of TiO2 and WO3/TiO2 nanoparticles coated on urban green infrastructure materials in removing nitrogen oxide. Int. J. Environ. Sci. Technol. 15, 581–592 (2018). https://doi.org/10.1007/s13762-017-1425-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1425-9

Keywords

Navigation