Skip to main content
Log in

A novel continuous magnetic nano-Fe3O4/perlite fixed bed reactor for catalytic wet peroxide oxidation of dyes: reactor structure

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the present work, a continuous catalytic wet peroxide oxidation fixed bed reactor was employed to treat a simulated wastewater sample with malachite green dye, as a contaminant. Natural perlite particle-supported nano-Fe3O4 catalyst was used as a fixed bed inside a reactor, and it was immobilized by a persistent magnetic field. The range of (perlite) particle sizes was from 100 to 1000 nm. The effects of various operating parameters, including temperature of the reactor, pH, initial hydrogen peroxide concentration and initial dye concentration, were investigated on the percentage removal of malachite green dye. Load of catalyst of 2 g and volumetric flow rate of 1 L/h were selected for all the tests. Maximum malachite green degradation was 99.5 ± 0.3%. This removal percentage was attained at temperature of 80 °C, pH = 6, initial dye concentration of 6 mg/L and initial hydrogen peroxide concentration of 100 mg/L. The process was isotherm, and the catalyst showed high catalytic activity in the steady-state condition. The loss of catalyst was less than 0.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bai ZY, Yang Q, Wang JL (2016) Fe3O4/multi-walled carbon nanotubes as an efficient catalyst for catalytic ozonation of p-hydroxybenzoic acid. Int J Environ Sci Technol 13(2):483–492

    Article  CAS  Google Scholar 

  • Bailón-García E, Carrasco-Marín F, Pérez-Cadenas AF, Maldonado-Hódar FJ (2016) Influence of the Pt-particle size on the performance of carbon supported catalysts used in the hydrogenation of citral. Catal Commun 82:36–40

    Article  Google Scholar 

  • Bautista P, Mohedano AF, Menéndez N, Casas JA, Rodriguez JJ (2010) Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catal Today 151(1–2):148–152

    Article  CAS  Google Scholar 

  • Chen TY, Kao CM, Hong A, Lin CE, Liang SH (2009) Application of ozone on the decolorization of reactive dyes—Orange-13 and Blue-19. Desalination 249(3):1238–1242

    Article  CAS  Google Scholar 

  • Chen T-C, Matira EM, Lu M-C, Dalida MLP (2016) Degradation of dimethyl sulfoxide through fluidized-bed Fenton process: kinetic analysis. Int J Environ Sci Technol 13(4):1017–1028

    Article  CAS  Google Scholar 

  • Chen F, Xie S, Huang X, Qiu X (2017) Ionothermal synthesis of Fe3O4 magnetic nanoparticles as efficient heterogeneous Fenton-like catalysts for degradation of organic pollutants with H2O2. J Hazard Mater 322:152–162

    Article  CAS  Google Scholar 

  • de Luna MDG, Aranzamendez GL, Tolosa NC, Lu M-C (2017) Synthesis of novel potassium peroxodisulfate-modified titanium dioxide for photocatalytic oxidation of acetaminophen under visible light irradiation. Int J Environ Sci Technol 14(5):973–982

    Article  CAS  Google Scholar 

  • Dhada I, Nagar PK, Sharma M (2016) Photo-catalytic oxidation of individual and mixture of benzene, toluene and p-xylene. Int J Environ Sci Technol 13(1):39–46

    Article  CAS  Google Scholar 

  • Dhaouadi A, Adhoum N (2010) Heterogeneous catalytic wet peroxide oxidation of paraquat in the presence of modified activated carbon. Appl Catal B Environ 97(1–2):227–235

    Article  CAS  Google Scholar 

  • El-Daly HA, Habib A-FM, Borhan El-Din MA (2005) Kinetic investigation of the oxidative decolorization of Direct Green 28 and Direct Blue 78 by hydrogen peroxide. Dyes Pigments 66(2):161–170

    Article  CAS  Google Scholar 

  • Feng YB, Hong L, Liu AL, Chen WD, Li GW, Chen W, Xia XH (2015) High-efficiency catalytic degradation of phenol based on the peroxidase-like activity of cupric oxide nanoparticles. Int J Environ Sci Technol 12(2):653–660

    Article  CAS  Google Scholar 

  • Harraz FA (2013) Synthesis and surface properties of magnetite (Fe3O4) nanoparticles infiltrated into porous silicon template. Appl Surf Sci 287:203–210

    Article  CAS  Google Scholar 

  • Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44(12):8269–8285

    Article  CAS  Google Scholar 

  • Hernandez P, Rodriguez JA, Galan CA, Castrillejo Y, Barrado E (2013) Amperometric flow system for blood glucose determination using an immobilized enzyme magnetic reactor. Biosens Bioelectron 41:244–248

    Article  CAS  Google Scholar 

  • Herney-Ramirez J, Silva AMT, Vicente MA, Costa CA, Madeira LM (2011) Degradation of Acid Orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: kinetic study with the Fermi’s equation. Appl Catal B Environ 101(3–4):197–205

    Article  CAS  Google Scholar 

  • Heydartaemeh M, Doulati Ardejani F, Badii K, Seifpanahi Shabani K, Mousavi S (2014) FeCl2/FeCl3 perlite nanoparticles as a novel magnetic material for adsorption of green malachite dye. Arab J Sci Eng 39(5):3383–3392

    Article  CAS  Google Scholar 

  • Ji F, Li C, Zhang J, Deng L (2011) Efficient decolorization of dye pollutants with LiFe(WO4)2 as a reusable heterogeneous Fenton-like catalyst. Desalination 269(1–3):284–290

    Article  CAS  Google Scholar 

  • Kayan B, Gözmen B, Demirel M, Gizir AM (2010) Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques. J Hazard Mater 177(1–3):95–102

    Article  CAS  Google Scholar 

  • Khalighi Sheshdeh R, Khosravi Nikou MR, Badii K, Yousefi Limaee N, Golkarnarenji G (2014) Equilibrium and kinetics studies for the adsorption of Basic Red 46 on nickel oxide nanoparticles-modified diatomite in aqueous solutions. J Taiwan Inst Chem Eng 45(4):1792–1802

    Article  Google Scholar 

  • Kolaczkowski ST, Plucinski P, Beltran FJ, Rivas FJ, Mclurgh DB (1999) Wet air oxidation: a review of process technologies and aspects in reactor design. Chem Eng J 73(2):143–160

    Article  CAS  Google Scholar 

  • Kondru AK, Kumar P, Chand S (2009) Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst. J Hazard Mater 166(1):342–347

    Article  CAS  Google Scholar 

  • Konrath M, Hackbarth M, Nirschl H (2014) Process monitoring and control for constant separation conditions in centrifugal classification of fine particles. Adv Powder Technol 25(3):991–998

    Article  Google Scholar 

  • Koyuncu I, Yalcin F, Ozturk I (1999) Color removal of high strength paper and fermentation industry effluents with membrane technology. Water Sci Technol 40(11–12):241–248

    CAS  Google Scholar 

  • Kurian M, Sugunan S (2006) Wet peroxide oxidation of phenol over mixed pillared montmorillonites. Chem Eng J 115(3):139–146

    Article  CAS  Google Scholar 

  • Liu Y, Sun D (2007a) Development of Fe2O3-CeO2-TiO2/γ-Al2O3 as catalyst for catalytic wet air oxidation of methyl orange azo dye under room condition. Appl Catal B Environ 72(3–4):205–211

    Article  CAS  Google Scholar 

  • Liu Y, Sun D (2007b) Effect of CeO2 doping on catalytic activity of Fe2O3/γ–Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes. J Hazard Mater 143(1–2):448–454

    Article  CAS  Google Scholar 

  • Lousteau C, Ayadi H, Descorme C (2017) Aqueous phase (catalytic) wet air oxidation of ammonia: thermodynamic considerations. Appl Catal B Environ 202:12–20

    Article  CAS  Google Scholar 

  • Makumire S, Chakravadhanula VSK, Köllisch G, Redel E, Shonhai A (2014) Immunomodulatory activity of zinc peroxide (ZnO2) and titanium dioxide (TiO2) nanoparticles and their effects on DNA and protein integrity. Toxicol Lett 227(1):56–64

    Article  CAS  Google Scholar 

  • Méndez A, Fernández F, Gascó G (2007) Removal of malachite green using carbon-based adsorbents. Desalination 206(1–3):147–153

    Article  Google Scholar 

  • Munoz M, Domínguez P, De Pedro ZM, Casas JA, Rodriguez JJ (2017) Naturally-occurring iron minerals as inexpensive catalysts for CWPO. Appl Catal B Environ 203:166–173

    Article  CAS  Google Scholar 

  • Neamţu M, Zaharia C, Catrinescu C, Yediler A, Macoveanu M, Kettrup A (2004) Fe-exchanged Y zeolite as catalyst for wet peroxide oxidation of reactive azo dye Procion Marine H-EXL. Appl Catal B Environ 48(4):287–294

    Article  Google Scholar 

  • Norouzi S, Badii K, Doulati Ardejani F (2010) Activated bauxite waste as an adsorbent for removal of Acid Blue 92 from aqueous solutions. Water Sci Technol 62(11):2491–2500

    Article  CAS  Google Scholar 

  • Oronzio R, Monteleone G, Pozio A, De Francesco M, Galli S (2009) New reactor design for catalytic sodium borohydride hydrolysis. Int J Hydrog Energy 34(10):4555–4560

    Article  CAS  Google Scholar 

  • Pan Y, Lin Y, Liu Y, Liu C (2016) Size-dependent magnetic and electrocatalytic properties of nickel phosphide nanoparticles. Appl Surf Sci 366:439–447

    Article  CAS  Google Scholar 

  • Panda N, Sahoo H, Mohapatra S (2011) Decolourization of Methyl Orange using Fenton-like mesoporous Fe2O3–SiO2 composite. J Hazard Mater 185(1):359–365

    Article  CAS  Google Scholar 

  • Papić S, Vujević D, Koprivanac N, Šinko D (2009) Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes. J Hazard Mater 164(2–3):1137–1145

    Google Scholar 

  • Rocha MaL, Del Ángel G, Torres-Torres G, Cervantes A, Vázquez A, Arrieta A, Beltramini JN (2015) Effect of the Pt oxidation state and Ce3+/Ce4+ ratio on the Pt/TiO2-CeO2 catalysts in the phenol degradation by catalytic wet air oxidation (CWAO). Catal Today 250:145–154

    Article  CAS  Google Scholar 

  • Rosales E, Pazos M, Longo MA, Sanromán MA (2009) Electro-Fenton decoloration of dyes in a continuous reactor: a promising technology in colored wastewater treatment. Chem Eng J 155(1–2):62–67

    Article  CAS  Google Scholar 

  • Šafařík I, Šafaříková M (2002) Detection of low concentrations of malachite green and crystal violet in water. Water Res 36(1):196–200

    Article  Google Scholar 

  • Sánchez-Oneto J, Portela JR, Nebot E, MartíNez-De-La-Ossa EJ (2004) Wet air oxidation of long-chain carboxylic acids. Chem Eng J 100(1–3):43–50

    Article  Google Scholar 

  • Santos VP, Pereira MFR, Faria PCC, Órfão JJM (2009) Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons. J Hazard Mater 162(2–3):736–742

    Article  CAS  Google Scholar 

  • Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66(3):319–329

    Article  CAS  Google Scholar 

  • Syed-Hassan SSA, Li C-Z (2011) Catalytic oxidation of ethane with oxygen using fluidised nanoparticle NiO catalyst. Appl Catal A Gen 405(1–2):166–174

    Article  CAS  Google Scholar 

  • Thiele EW (1939) Relation between Catalytic Activity and Size of Particle. Ind Eng Chem 31(7):916–920

    Article  CAS  Google Scholar 

  • Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93(1):154–168

    Article  CAS  Google Scholar 

  • Wan Ngah WS, Teong LC, MaKM Hanafiah (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456

    Article  CAS  Google Scholar 

  • Xu N, Shi Z, Fan Y, Dong J, Shi J, Hu MZC (1999) Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Ind Eng Chem Res 38(2):373–379

    Article  CAS  Google Scholar 

  • Zhan Y, Li H, Chen Y (2010) Copper hydroxyphosphate as catalyst for the wet hydrogen peroxide oxidation of azo dyes. J Hazard Mater 180(1–3):481–485

    Article  CAS  Google Scholar 

  • Zhou L, Jin J, Liu Z, Liang X, Shang C (2011) Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J Hazard Mater 185(2–3):1045–1052

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The catalyst has been synthesized based on Iranian Patent No 79234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Badii.

Additional information

Editorial responsibility: Agnieszka Galuszka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh Kondori, F., Badii, K., Masoumi, M.E. et al. A novel continuous magnetic nano-Fe3O4/perlite fixed bed reactor for catalytic wet peroxide oxidation of dyes: reactor structure. Int. J. Environ. Sci. Technol. 15, 543–550 (2018). https://doi.org/10.1007/s13762-017-1420-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1420-1

Keywords

Navigation