Skip to main content
Log in

Investigation of source locations and contributions using an integrated trajectory-source apportionment method with multiple time resolution data

  • Short Communication
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Fine particulate matter (PM2.5) and volatile organic compounds (VOCs) coexist in ambient air and contribute to adverse health effects in human populations. Thus, it is helpful to identify the contributions of air pollutants from different sources in order to design effective control strategies. Nevertheless, different sampling time schedules for VOCs and PM2.5 result in difficulties for conventional receptor modeling. Additionally, a receptor model is unable to link the retrieved factors directly with actual source locations. To address these gaps, this study integrated back-trajectory data into an improved source apportionment model suitable for multiple time resolution data to estimate the locations of the regional transport-related factor. Within six potential source regions (PSRs) outlined by the above method, PSR 5 was suggested the primary one located near the industrial regions in the northeastern China. Constrained model results showed that the source contribution estimates with back trajectories passing over the PSRs were 3 and 9% of the selected VOCs and PM2.5 mass, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Amato F, Hopke PK (2012) Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization. Atmos Environ 46:329–337. doi:10.1016/j.atmosenv.2011.09.062

    Article  CAS  Google Scholar 

  • Belis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108. doi:10.1016/j.atmosenv.2012.11.009

    Article  CAS  Google Scholar 

  • Buzcu-Guven B, Brown SG, Frankel A, Hafner HR, Roberts PT (2007) Analysis and apportionment of organic carbon and fine particulate matter sources at multiple sites in the midwestern United States. J Air Waste Manag Assoc 57:606–619

    Article  CAS  Google Scholar 

  • Cohen DD, Crawford J, Stelcer E, Atanacio AJ (2012) Application of positive matrix factorization, multi-linear engine and back trajectory techniques to the quantification of coal-fired power station pollution in metropolitan Sydney. Atmos Environ 61:204–211. doi:10.1016/j.atmosenv.2012.07.037

    Article  CAS  Google Scholar 

  • Cooper JA, Watson JG (1980) Receptor oriented methods of air particulate source apportionment. J Air Pollut Control Assoc 30:1116–1125. doi:10.1080/00022470.1980.10465157

    Article  Google Scholar 

  • Draxler RR, Rolph GD (2015) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY. NOAA Air Resources Laboratory, NOAA ARL READY. http://ready.arl.noaa.gov/HYSPLIT.php

  • Gugamsetty B et al (2012) Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using positive matrix factorization. Aerosol Air Qual Res 12:476–491. doi:10.4209/aaqr.2012.04.0084

    CAS  Google Scholar 

  • Heo JB, Hopke PK, Yi SM (2009) Source apportionment of PM2.5 in Seoul, Korea. Atmos Chem Phys 9:4957–4971

    Article  CAS  Google Scholar 

  • Hopke PK (2016) Review of receptor modeling methods for source apportionment. J Air Waste Manag Assoc 66:237–259. doi:10.1080/10962247.2016.1140693

    Article  Google Scholar 

  • Karnae S, John K (2011) Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas. Atmos Environ 45:3769–3776. doi:10.1016/j.atmosenv.2011.04.040

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK, Edgerton ES (2003) Source identification of Atlanta aerosol by positive matrix factorization. J Air Waste Manag Assoc 53:731–739

    Article  CAS  Google Scholar 

  • Kuo CP, Liao HT, Chou CC, Wu CF (2014) Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data. Sci Total Environ 472:880–887. doi:10.1016/j.scitotenv.2013.11.114

    Article  CAS  Google Scholar 

  • Lee S, Ashbaugh L (2007a) Comparison of the MURA and an improved single-receptor (SIRA) trajectory source apportionment (TSA) method using artificial sources. Atmos Environ 41:4466–4481. doi:10.1016/j.atmosenv.2007.01.043

    Article  CAS  Google Scholar 

  • Lee S, Ashbaugh L (2007b) The impact of trajectory starting heights on the MURA trajectory source apportionment (TSA) method. Atmos Environ 41:7022–7036. doi:10.1016/j.atmosenv.2007.05.005

    Article  CAS  Google Scholar 

  • Liao HT, Kuo CP, Hopke PK, Wu CF (2013) Evaluation of a modified receptor model for solving multiple time resolution equations: a simulation study. Aerosol Air Qual Res 13:1253–1262. doi:10.4209/aaqr.2012.11.0322

    Google Scholar 

  • Liao H-T, Chou CCK, Chow JC, Watson JG, Hopke PK, Wu C-F (2015) Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data. Environ Pollut 205:121–130. doi:10.1016/j.envpol.2015.05.035

    Article  CAS  Google Scholar 

  • Norris G et al (2009) Guidance document for PMF applications with the multilinear engine. US Environmental Protection Agency, Washington

    Google Scholar 

  • Paatero P, Hopke PK (2009) Rotational tools for factor analytic models. J Chemom 23:91–100. doi:10.1002/cem.1197

    Article  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126. doi:10.1002/env.3170050203

    Article  Google Scholar 

  • Rolph GD (2015) Real-time environmental applications and display system (READY). NOAA Air Resources Laboratory. http://ready.arl.noaa.gov

  • Sarnat JA et al (2008) Fine particle sources and cardiorespiratory morbidity: an application of chemical mass balance and factor analytical source-apportionment methods. Environ Health Perspect 116:459–466. doi:10.1289/Ehp.10873

    Google Scholar 

  • Viana M et al (2008a) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849. doi:10.1016/j.jaerosci.2008.05.007

    Article  CAS  Google Scholar 

  • Viana M, Pandolfi M, Minguillón MC, Querol X, Alastuey A, Monfort E, Celades I (2008b) Inter-comparison of receptor models for PM source apportionment: case study in an industrial area. Atmos Environ 42:3820–3832. doi:10.1016/j.atmosenv.2007.12.056

    Article  CAS  Google Scholar 

  • Wang YQ, Zhang XY, Draxler RR (2009) TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ Model Softw 24:938–939. doi:10.1016/j.envsoft.2009.01.004

    Article  Google Scholar 

  • Wimolwattanapun W, Hopke PK, Pongkiatkul P (2011) Source apportionment and potential source locations of PM2.5 and PM2.5–10 at residential sites in metropolitan Bangkok. Atmos Pollut Res 2:172–181

    Article  CAS  Google Scholar 

  • Zhou LM, Hopke PK, Paatero P, Ondov JM, Pancras JP, Pekney NJ, Davidson CI (2004a) Advanced factor analysis for multiple time resolution aerosol composition data. Atmos Environ 38:4909–4920. doi:10.1016/j.atmosenv.2004.05.040

    Article  CAS  Google Scholar 

  • Zhou LM, Kim E, Hopke PK, Stanier CO, Pandis S (2004b) Advanced factor analysis on Pittsburgh particle size-distribution data. Aerosol Sci Technol 38:118–132. doi:10.1080/02786820390229589

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by research Grants from the Ministry of Science and Technology of Taiwan (MOST 103-2221-E-002-008-MY3) and from the National Taiwan University (103R7742 and 104R4000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: N. Atar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H.T., Wu, C.F. Investigation of source locations and contributions using an integrated trajectory-source apportionment method with multiple time resolution data. Int. J. Environ. Sci. Technol. 14, 1781–1786 (2017). https://doi.org/10.1007/s13762-017-1265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1265-7

Keywords

Navigation