Skip to main content
Log in

Effectiveness of rice husk ash in stabilizing Kenyan red coffee soil for road subgrades construction

  • Short Communication
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The high cost of traditional stabilizing agents such as lime and cement has led to the research on industrial and agricultural wastes as suitable alternatives. Rice growing areas of Kenya accumulate large quantities of rice husk which pose serious disposal problems. When burnt as a means of disposal, the rice husk ash formed is difficult to coagulate and thus contribute to air and water pollution, require a large space for disposal, and cause respiratory health problems when inhaled. Red coffee soil poses serious engineering problems such as swelling due to wetting, shrinkage due to drying, low bearing capacity, and differential settlement leading to cracks and needs improvement for strength and stability in service. Red coffee soil and rice husks samples were obtained from Gatundu and Mwea, respectively. The rice husk was burnt at temperatures between 500 and 700 °C to ensure maximal formation of siliceous component. Chemical analysis on the rice husk ash gave the sum of SiO2, Fe2O3, and Al2O3 as 85.5 % indicating that it has pozzolanic activity. Rice husk ash was applied at 4, 6, 8, and 10 % by weight of dry soil. Plasticity index, liquid limit, and linear shrinkage decreased from 26.1, 67.1, and 13.0 % for lean sample to 18.5, 63.6, and 9.2 %, for 10 % rice husk ash stabilized samples, whereas plastic limit increased from 41.0 to 45.15 %. The soaked California bearing ratio value for rice husk ash stabilized samples increased from 5 to 22 % corresponding to soil subgrade class S4. However, lime-stabilized samples gave higher values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • ASTM C618 (2003) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. American Society For Testing and Materials, West Conshohocken

  • BS 1377 (1990) Methods of testing soils for civil engineering purposes. British Standard Institute, London

  • Cuisinier O, Auriol J-C, Borgne TL, Deneele D (2011) Microstructure and hydraulic conductivity of a compacted lime-treated soil. Eng Geol 123:187–193

    Article  Google Scholar 

  • Kamau GN, Mbindyo JKN, Githinji ZP, Tuts RJR, Kinyua AM (1993) Rice husk ash and its application as a cement replacement material in Kenya. Int J BioChem Phys 2:138–142

    CAS  Google Scholar 

  • Kenya Roads Design Manual Part 3, 1987. Nairobi, Kenya

  • Kishore G, Pandey V, Singh JP (2015) Enhancing the engineering properties of soil stabilized with lime and rice husk ash. Int J Innov Res Sci Eng Technol 4:4857–4864

    Google Scholar 

  • Mandeed S, Anupam M (2014) A review on the soil stabilization with waste materials. Int J Eng Res Appl 2:11–16

    Google Scholar 

  • Musa A (2008) Potentials of rice husk ash for soil stabilization. Assumpt Univ J Technol 11:246–250

    Google Scholar 

  • Nair DG, Fraaij A, Adri AKK, Arno PMK (2008) A structural investigation relating to the pozzolanic activity of rice husk ashes. Cem Concr Res 38:861–869

    Article  CAS  Google Scholar 

  • Siddique A, Hossain MA (2011) Effects of lime stabilization on engineering properties of an expansive soil for use in road construction. J Soc Transp Traffic Stud 2:1–9

    Google Scholar 

  • Tran TD, Cui Y-J, Tang AM, Audiguier M, Cojean R (2014) Effects of lime treatment on the microstructure and hydraulic conductivity of Hericourt clay. J Rock Mech Geotech Eng 6:399–404

    Article  Google Scholar 

  • Wansom S, Janjaturaphan S, Sinthupinyo S (2009) Pozzolanic activity of rice husk ash: comparison of various electrical methods. J Met Mat Minerals 19:1–7

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank The Chief Engineer, Materials. Materials Testing and Research Division of the Ministry of Transport and Infrastructure, Kenya for allowing them to use their laboratories for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. O. Okwadha.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okwadha, G.D.O., Nyingi, P.W. Effectiveness of rice husk ash in stabilizing Kenyan red coffee soil for road subgrades construction. Int. J. Environ. Sci. Technol. 13, 2731–2734 (2016). https://doi.org/10.1007/s13762-016-1092-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1092-2

Keywords

Navigation