Skip to main content
Log in

Investigation on the effective remediation of quinoline at solid/solution interface using modified agricultural waste: an inclusive study

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This research work explores the potential of modified agricultural waste for the sorption of quinoline from aqueous media. A quinoline removal efficiency of around 97 % and sorption capacities of ~20 (batch) and ~35 mg g−1 (fixed-bed) were achieved. Pseudo-second-order kinetics and Temkin isotherm best represented the equilibrium sorption data. The sorption of quinoline is exothermic and spontaneous in nature with a slight increase in the system entropy. The quinoline sorption mechanism is controlled by H-bonding, π–π dispersive interactions, boundary layer, and intraparticle diffusion. Microwave–chemical integrated regeneration technique retrieves the sorption capacity of the exhausted sorbent with 99.15, 97.64, and 95.55 % of the original, in three sorption–regeneration cycles. Energy recovery (19.365 MJ kg−1) from the quinoline-loaded sorbent and the potential utilization of left-over ash materials enhanced the prospective of the sorbent for the remediation of pollutants for a clean and green environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmaruzzaman M, Ahmed MJK, Begum S (2015) Remediation of Eriochrome black T-contaminated aqueous solutions utilizing H3PO4-modified berry leaves as a non-conventional adsorbent. Desalin Water Treat 56:1507–1519

    Article  CAS  Google Scholar 

  • Ahmed MJK, Ahmaruzzaman M (2015a) A facile synthesis of Fe3O4—charcoal composite for the sorption of a hazardous dye from aquatic environment. J Environ Manag 163:163–173

    Article  CAS  Google Scholar 

  • Ahmed MJK, Ahmaruzzaman M (2015b) Activated charcoal-magnetic nanocomposite for remediation of simulated dye polluted wastewater. Water Sci Technol 71:1361–1366

    Article  CAS  Google Scholar 

  • Ahmed MJK, Ahmaruzzaman M (2015c) Adsorptive desulfurization of feed diesel using chemically impregnated coconut coir waste. Int J Environ Sci Technol 12:2847–2856

    Article  CAS  Google Scholar 

  • Ahmed MJK, Ahmaruzzaman M (2015d) Fabrication and characterization of novel lignocellulosic biomass tailored Fe3O4 nanocomposites: influence of annealing temperature and chlorazol black E sequestration. RSC Adv 5:107466–107473

    Article  CAS  Google Scholar 

  • Ahmed MJK, Ahmaruzzaman M, Reza RA (2014) Lignocellulosic-derived modified agricultural waste: development, characterisation and implementation in sequestering pyridine from aqueous solutions. J Colloids Interface Sci 428:222–234

    Article  CAS  Google Scholar 

  • Ahmed MJK, Ahmaruzzaman M, Bordoloi MH (2015) Novel Averrhoa carambola extract stabilized magnetite nanoparticles: a green synthesis route for the removal of chlorazol black E from wastewater. RSC Adv 5:74645–74655

    Article  CAS  Google Scholar 

  • Ali I, Gupta VK (2007) Advances in water treatment by adsorption technology. Nat Protoc 1:2661–2667

    Article  Google Scholar 

  • Alonso-Davilla P, Torres-Rivera OL, Leyva-Ramos R, Ocampo-Perez R (2012) Removal of pyridine from aqueous solutions by adsorption on activated carbon cloth. CLEAN Soil Air Water 40:45–53

    Article  Google Scholar 

  • Ania CO, Parra JB, Menendez JA, Pis JJ (2005) Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons. Microporous Mesoporous Mater 85:7–15

    Article  CAS  Google Scholar 

  • Baccar R, Blanquez P, Bouzid J, Feki M, Attiya H, Sarra M (2013) Modelling of adsorption isotherms and kinetics of a tannery dye onto an activated carbon prepared from an agricultural by-product. Fuel Proc Technol 106:408–415

    Article  CAS  Google Scholar 

  • Bai Y, Sun Q, Sun R, Wen D, Tang X (2011) Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biologically aerated filters. Environ Sci Techol 45:1940–1948

    Article  CAS  Google Scholar 

  • Burgos W, Nipon P, Mazzarese MC, Chorover J (2002) Adsorption of quinoline to kaolinite and montmorillonite. Environ Eng Sci 19:59–68

    Article  CAS  Google Scholar 

  • Collin G, Hoke H (1993) Quinoline and Isoquinoline. In: Elvers B, Hawkins S, Russey W, Schulz G (eds) Ullmann’s encyclopaedia of industrial chemistry, A22. VCH, Weinheim, pp 465–469

    Google Scholar 

  • Enriquez R, Pichat P (2001) Interactions of humic acid, quinoline, and TiO2 in water in relation to quinoline photocatalytic removal. Langmuir 17:6132–6137

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. Phys Chem 57:385–471

    CAS  Google Scholar 

  • Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A (2011) A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. J Hazard Mater 186:891–901

    Article  CAS  Google Scholar 

  • Helfferich F (1963) Ion exchange. McGraw-Hill, New York

    Google Scholar 

  • Jing J, Li W, Boyd A, Zhang Y, Colvin VL, Yu WW (2012) Photocatalytic degradation of quinoline in aqueous TiO2 suspension. J Hazard Mater 237–238:247–255

    Article  Google Scholar 

  • Jing J, Li J, Feng J, Li W, Yu WW (2013) Photodegradation of quinoline in water over magnetically separable Fe3O4/TiO2 photocatalyst. Chem Eng J 219:355–360

    Article  CAS  Google Scholar 

  • Jing J, Zhang Y, Li W, Yu WW (2014) Visible light driven photodegradation of quinoline over TiO2/graphene oxide nanocomposites. J Catal 316:174–181

    Article  CAS  Google Scholar 

  • Kim D, Caruthers JM, Peppas NA (1993) Penetrant transport in crosslinked polystyrene. Macromolecules 26:1841–1847

    Article  CAS  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  • Liao P, Yuan S, Xie W, Zhang W, Tong M, Wang K (2013) Adsorption of nitrogen-heterocyclic compounds on bamboo charcoal: kinetics, thermodynamics, and microwave regeneration. J Colloid Interface Sci 390:189–195

    Article  CAS  Google Scholar 

  • Moon J, Dons KK, Won KL (1989) Adsorption equilibria for m-cresol, quinoline, and 1-naphthol onto silica gel. Korean J Chem Eng 6:172–178

    Article  CAS  Google Scholar 

  • Rameshraja D, Srivastava VC, Kushwaha JP, Mall ID (2012) Quinoline adsorption onto granular activated carbon and bagasse fly ash. Chem Eng J 181–182:343–351

    Article  Google Scholar 

  • Santhi T, Manonmani S, Smitha T, Mahalaxmi K (2009) Adsorption kinetics of cationic dyes from aqueous solution by bioadsorption onto activated carbon prepared from cucumis sativa. J Appl Sci Environ Sanit 4:263–271

    Google Scholar 

  • Temkin MJ, Pyzhev V (1940) Kinetics of ammonia synthesis on prompted iron catalyst. Acta Physicochem URSS 12:217–256

    Google Scholar 

  • Thomsen AB, Henriksen K, Gron C, Moldrup P (1999) Sorption, transport, and degradation of quinoline in unsaturated soil. Environ Sci Technol 33:2891–2898

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1962) Kinetics of adsorption of carbon from solution. J Sanit Eng Div Am Soc Civil Eng 89:31–59

    Google Scholar 

  • Zhu S, Bell PRF, Greenfield PF (1988) Isotherm studies on sorption of pyridine and quinoline onto Rundle spent shale. Fuel 67:1316–1320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the National Institute of Technology, Silchar, for providing laboratory facilities. Md. Juned K. Ahmed gratefully acknowledges the Ministry of Minority Affairs (MoMA), Government of India and University Grant Commission (UGC), New Delhi (F1-17.1/2012-13/MANF-2012-13-MUS-ASS-9763/(SA-III/Website)), for financial assistance under the Maulana Azad National Senior Research Fellowship (MANSRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ahmaruzzaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.J.K., Ahmaruzzaman, M. Investigation on the effective remediation of quinoline at solid/solution interface using modified agricultural waste: an inclusive study. Int. J. Environ. Sci. Technol. 13, 1177–1188 (2016). https://doi.org/10.1007/s13762-016-0952-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-0952-0

Keywords

Navigation