Skip to main content

Advertisement

Log in

Using oyster tissue toxicity as an indicator of disturbed environments

  • Short Communication
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Crassostrea virginica (the Eastern or American oyster) bioaccumulates pollutants from the water column, and therefore, its tissues can be used as bioindicators of past and present estuarine health. In this pilot project, we decided to investigate whether its tissues would be a suitable medium for toxicity testing using tissues from a variety of southern Texas locations of known and suspected anthropogenically impacted and unimpacted areas. We also conducted toxicity tests on sediments adjacent to oyster reefs using standard protocols for sediment toxicity. We tested the toxicity of tissues and sediments on the luminescent bacteria Vibrio fischeri, whose bioassays are commonly referred to by the trade name Microtox®. Microtox tests are quick, relatively inexpensive and sensitive to a range of contaminants. Evidence from this preliminary study suggests that conducting toxicity tests on oyster tissues may predict localized contamination better than when conducting toxicity tests on subtidal sediment. The refinement of these methods to use oyster tissues to detect contamination may be especially useful for environmental impact studies and/or studies where rapid and inexpensive information is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Aguilar CA, Montalvo C, Rodríguez L, Cerón JG, Cerón RM (2012) American oyster (Crassostrea virginica) and sediments as a coastal zone pollution monitor by heavy metals. Int J Environ Sci Technol 9:579–586. doi:10.1007/s13762-012-0078-y

    Article  CAS  Google Scholar 

  • Beijerinck MW (1889) Le Photobacterium luminosum, bactérie lumineuse de la Mer du Nord. Arch Neerl Sci Exact Nat 23:401–405

    Google Scholar 

  • Boening DW (1999) An evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. Environ Monit Assess 55:459–470. doi:10.1023/A:1005995217901

    Article  CAS  Google Scholar 

  • Campisi T, Abbondanzi F, Casado-Martinez C, Delvalls TA, Guerra R, Iacondini A (2005) Effect of sediment turbidity and color on light output measurement for Microtox basic solid-phase test. Chemosphere 60:9–15. doi:10.1016/j.chemosphere.2004.12.052

    Article  CAS  Google Scholar 

  • Carr RS, Long ER, Chapman DC, Thursby G, Biedenbach JM, Windom H, Sloane G, Wolfe DA (1996) Toxicity assessment studies of contaminated sediments in Tampa Bay, Florida. Environ Toxicol Chem 15:1218–1231. doi:10.1002/etc.5620150730

    Article  CAS  Google Scholar 

  • Cotou E, Papathanassiou E, Tsangaris C (2002) Assessing the quality of marine coastal environments: comparison of scope for growth and Microtox bioassay results of pollution gradient areas in eastern Mediterranean (Greece). Environ Pollut 119:141–149. doi:10.1016/S0269-7491(01)00337-2

    Article  CAS  Google Scholar 

  • Couillard CM, Laplatte B, Pelletier E (2009) A fish bioassay to evaluate the toxicity associated with the ingestion of benzo [a] pyrene-contaminated benthic prey. Environ Toxicol Chem 28:772–781. doi:10.1897/08-092R.1

    Article  CAS  Google Scholar 

  • Day KE, Dutka BJ, Kwan KK, Batista N, Reynoldson TB, Metcalfe-Smith JL (1995) Correlations between solid-phase microbial screening assays, whole-sediment toxicity tests with macroinvertebrates and in situ benthic community structure. J Great Lakes Res 21:192–206. doi:10.1016/S0380-1330(95)71031-0

    Article  CAS  Google Scholar 

  • Doe K, Jackman P, Scroggins R, Mcleay D, Wohlgeschaffen G (2005) Solid-phase test for sediment toxicity using the luminescent bacterium, Vibrio fischeri. In: Blaise C, Férard J-F (eds) Small-scale freshwater toxicity investigations. Springer, Dordrecht, pp 107–136

    Chapter  Google Scholar 

  • Farrington JW (1983) Bivalves as sentinels of coastal chemical pollution—the mussel (and oyster) watch. Oceanus 26:18–29

    Google Scholar 

  • Folk RL (1965) Petrology of sedimentary rocks. Hemphill, Austin

    Google Scholar 

  • Girotti S, Ferri EN, Fumo MG, Maiolini E (2008) Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta 608:2–29. doi:10.1016/j.aca.2007.12.008

    Article  CAS  Google Scholar 

  • Jackson TJ, Wade TL, McDonald TJ, Wilkinson DL, Brooks JM (1994) Polynuclear aromatic hydrocarbon contaminants in oysters from the Gulf of Mexico (1986–1990). Environ Pollut 83:291–298. doi:10.1016/0269-7491(94)90150-3

    Article  CAS  Google Scholar 

  • Jennings VLK, Rayner-Brandes MH, Bird DJ (2001) Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri): a comparison of three commercial systems. Water Res 14:3448–3456. doi:10.1016/S0043-1354(01)00067-7

    Article  Google Scholar 

  • Johnson BT (2005) Microtox® acute toxicity test. In: Blaise C, Férard J-F (eds) Small-scale freshwater toxicity investigations. Springer, Dordrecht, pp 69–105

    Chapter  Google Scholar 

  • Kwan KK, Dutka BJ (1992) Evaluation of toxi-chromotest direct sediment toxicity testing procedure and Microtox solid-phase testing procedure. B Environ Contam Toxicol 49:656–662. doi:10.1007/BF00200777

    Article  CAS  Google Scholar 

  • Lappalainen J, Juvonen R, Nurmi J, Karp M (2001) Automated color correction method for Vibrio fischeri toxicity test. Comparison of standard and kinetic assays. Chemosphere 45:635–641. doi:10.1016/S0045-6535(00)00579-8

    Article  CAS  Google Scholar 

  • Lau-Wong MM (1990) Assessing the effectiveness of depuration of polluted clams and mussels using the Microtox® bioassay. Bull Environ Contam Toxicol 44:876–883. doi:10.1007/BF01702178

    Article  CAS  Google Scholar 

  • Mariscal A, Peinado MT, Carnero-Varo M, Fernández-Crehuet J (2003) Influence of organic solvents on the sensitivity of a bioluminescence toxicity test with Vibrio harveyi. Chemosphere 50:349–354. doi:10.1016/S0045-6535(02)00312-0

    Article  Google Scholar 

  • Montagna PA, Palmer TA (2012) Water and sediment quality status and trends in the coastal bend area—phase 2: data analysis. Report submitted to the Coastal Bend Bays and Estuaries program for project 1206. Texas A&M University—Corpus Christi, Harte Research Institute for Gulf of Mexico Studies, pp 520

  • Morehead S, Montagna P, Kennicutt MC II (2008) Comparing fixed-point and probabilistic sampling designs for monitoring the marine ecosystem near McMurdo Station, Ross Sea, Antarctica. Antarct Sci 20:471–484. doi:10.1017/S0954102008001326

    Article  Google Scholar 

  • Nicolau BA, Hill EM (2011) Nueces Bay total maximum daily load project—year-five implementation effectiveness monitoring data report. Texas Commission on Environmental Quality, Texas, p 62

    Google Scholar 

  • Presley RJ, Taylor RJ, Boothe PN (1990) Trace metals in Gulf of Mexico oysters. Sci Total Environ 97(98):551–553. doi:10.1016/0048-9697(90)90263-T

    Article  Google Scholar 

  • Ramaiah N, Chandrmohan D (1993) Ecological and laboratory studies on the role of luminous bacteria and their luminescence in coastal pollution surveillance. Mar Pollut Bull 26:190–201. doi:10.1016/0025-326X(93)90621-P

    Article  CAS  Google Scholar 

  • Ribo JM, Kaiser KLE (1987) Photobacterium Phosphoreum toxicity bioassay. I. Test procedures and applications. Toxic Assess 2:305–323. doi:10.1002/tox.2540020307

    CAS  Google Scholar 

  • Ringwood AH, Delorenzo ME, Ross PE, Holland AF (1997) Interpretation of Microtox solid-phase toxicity tests: the effects of sediment composition. Environ Toxicol Chem 16:1135–1140. doi:10.1002/etc.5620160607

    Article  CAS  Google Scholar 

  • Ross P, Burton GA, Greene M, Ho K, Meier P, Sweet L, Auwarter A, Bispo A, Doe K, Erstfeld K, Goudey S, Goyvaerts M, Henderson D, Jourdain M, Lenon M, Pandard P, Qureshi A, Rowland C, Schipper C, Schreurs W, Trottier S, Van Aggelen G (1999) Interlaboratory precision study of a whole sediment toxicity test with the bioluminescent bacterium Vibrio fischeri. Environ Toxicol 14:339–345. doi:10.1002/(SICI)1522-7278(199907)14:3<339:AID-TOX7>3.0.CO;2-R

    Article  CAS  Google Scholar 

  • Salazar MH, Salazar SM (1997) Using bioaccumulation and growth in caged intertidal oysters to assess oil exposure and effects in Delaware Bay. In: Proceedings of 20th Arctic Marine Oilspill Program (AMOP) vol 1. pp 661–675

  • Sericano JL, Atlas EL, Wade TL, Brooks JM (1990a) NOAA’s status and trends mussel watch program: chlorinated pesticides and PCB’s in oysters (Crassostrea virginica) and sediments from the Gulf of Mexico, 1986–1987. Mar Environ Res 29:161–203. doi:10.1016/0141-1136(90)90033-K

    Article  CAS  Google Scholar 

  • Sericano JL, Wade TL, Atlas EL, Brooks JM (1990b) Historical perspective on the environmental bioavailability of DDT and its derivatives to Gulf of Mexico oysters. Environ Sci Technol 24:1541–1548. doi:10.1021/es00080a014

    Article  CAS  Google Scholar 

  • Sericano JL, Wade TL, Brooks JM (1996) Accumulation and depuration of organic contaminants by the American oyster (Crassostrea virginica). Sci Total Environ 179:149–160. doi:10.1016/0048-9697(96)90054-6

    Article  CAS  Google Scholar 

  • Sprague JB (1969) Measurement of pollutant toxicity to fish I. Bioassay methods for acute toxicity. Water Res 3:793–821. doi:10.1016/0043-1354(69)90050-5

    Article  CAS  Google Scholar 

  • Strategic Diagnostics Inc (2009) Microtox® basic solid-phase test (Basic SPT). Strategic Diagnostics Inc, Newark

    Google Scholar 

  • Tay K-L, Doe KG, Wade SJ, Vaughan JDA, Berrigan RE, Moore MJ (1992) Sediment bioassessment in Halifax Harbour. Environ Toxicol Chem 11:1567–1581. doi:10.1002/etc.5620111107

    Article  CAS  Google Scholar 

  • Weideborg M, Vik EA, Ofjord GD, Kjonno O (1997) Comparison of three marine screening tests and four Oslo and Paris commission procedures to evaluate toxicity of offshore chemicals. Environ Toxicol Chem 16:384–389. doi:10.1002/etc.5620160238

    Article  Google Scholar 

Download references

Acknowledgments

The initial idea for this trial study came after seeing the work by Beth Falls and others from Ocean Research and Conservation Association (ORCA) in Ft. Pierce, FL. Oysters have been used as sentinel species for time series and disturbance monitoring research by this group. Paige Uehling was funded by the National Science Foundation’s (NSF) Research Experience for Undergraduates (REU) program (Grant No. DBI-1004903: SURF—Summer Undergraduate Research Focus) during the fieldwork and laboratory components of this study. Uehling was also a student at Bucknell University during this period. We thank Dr. Kim Withers for assisting Uehling with REU program logistics and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Palmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmer, T.A., Uehling, P. & Pollack, J.B. Using oyster tissue toxicity as an indicator of disturbed environments. Int. J. Environ. Sci. Technol. 12, 2111–2116 (2015). https://doi.org/10.1007/s13762-014-0745-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0745-2

Keywords

Navigation