Skip to main content

Advertisement

Log in

A potential bioconversion of empty fruit bunches into organic fertilizer using Eudrilus eugeniae

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Vermicomposting is a process to biotransform organic solid wastes into valuable product, namely vermicompost using epigeic earthworms. Vermicomposting technology may provide a low-input basis for sustainable management of organic solid waste. The present study was to investigate the suitability of oil palm empty fruit bunches to be reused as feedstocks of Eudrilus eugeniae for the duration of 12 weeks. Empty fruit bunches were mixed with cow dung in different ratios to produce five different treatments for laboratory screening of solid waste. The growths of E. eugeniae were monitored weekly. All treatments encouraged the growth of E. eugeniae except the treatment with empty fruit bunches alone. The maturity and quality of vermicompost were assessed through carbon-to-nitrogen ratio, calcium, phosphorus, potassium and magnesium. Generally, all treatments showed increases in total contents of calcium (39.38–373.17 %), phosphorus (15.15–390.54 %), potassium (45.55–153.66 %) and magnesium (55.86–370.93 %) but a decrease in carbon-to-nitrogen ratio (11.24–76.24 %) after 12 weeks of vermicomposting process. Besides, parameters such as pH and electrical conductivity were also investigated in this paper. Among all the treatments investigated, empty fruit bunches that were mixed with cow dung in the ratio of 2:1 were biotransformed into the most superior quality vermicompost (carbon-to-nitrogen ratio, 18.53; calcium, 7.76 g/kg; phosphorus, 3.63 g/kg; potassium, 12.81 g/kg; and magnesium, 4.05 g/kg). In conclusion, vermicomposting could be used as an efficient technology to convert empty fruit bunches into nutrient-rich organic fertilizers if the wastes were mixed with cow dung in an appropriate ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdullah SSS, Hassan MA, Shirai Y, Funaoka M, Shinano T, Idris A (2009) Effect of solvent pre-treatment on lignophenol production from oil palm empty fruit bunch fibres. J Oil Palm Res 21:700–709

    Google Scholar 

  • Abdullah N, Gerhauser H, Sulaiman F (2010) Fast pyrolysis of empty fruit bunches. Fuel 89(8):2166–2169

    Article  CAS  Google Scholar 

  • Abu Bakar NK, Zanirun Z, Abd-Aziz S, Ghazali FM, Hassan MA (2012) Production of fermentable sugars from oil palm empty fruit bunch using crude cellulase cocktails with trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 for bioethanol production. BioResources 7(3):3627–3639

    CAS  Google Scholar 

  • Alam MZ, Bari MN, Muyiba SA, Jamal P, Mamum AA (2010) Solid state bioconversion of oil palm empty fruit bunches for production of citric acid by wild strains of Aspergillus niger. Food Biotechnol 24(1):19–36

    Article  CAS  Google Scholar 

  • Bakar AA, Keat TB, Hassan A (2010) Tensile properties of a poly (vinyl chloride) composite filled with poly (methyl methacrylate) grafted to oil palm empty fruit bunches. J Appl Polym Sci 115(1):91–98

    Article  CAS  Google Scholar 

  • Benítez E, Sainz H, Melgar R, Nogales R (2002) Vermicomposting of a lignocellulosic waste from olive oil industry: a pilot scale study. Waste Manag Res 20(2):134–142

    Article  Google Scholar 

  • Chaoui HI, Zibilske LM, Ohno T (2003) Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol Biochem 35(2):295–302

    Article  CAS  Google Scholar 

  • Chiew YL, Shimada S (2013) Current state and environmental impact assessment for utilizing oil palm empty fruit bunches for fuel, fiber and fertilizer—a case study of Malaysia. Biomass Bioenergy 51:109–124

    Article  CAS  Google Scholar 

  • Chong PS, Jahim JM, Harun S, Lim SS, Mutalib SA, Hassan O, Nor MTM (2013) Enhancement of batch biohydrogen production from prehydrolysate of acid treated oil palm empty fruit bunch. Int J Hydrogen Energy 38(22):9592–9599

    Article  CAS  Google Scholar 

  • Domínguez J, Gómez-Brandón M (2013) The influence of earthworms on nutrient dynamics during the process of vermicomposting. Waste Manag Res 31(8):859–868

    Article  Google Scholar 

  • Domínguez J, Edward CA, Ashby J (2001) The biology and population dynamics of Eudrilus eugeniae (Kinberg) (Oligochaeta) in cattle waste solids. Pedobiologia 45(4):341–353

    Article  Google Scholar 

  • Elvira C, Sampedro L, Benítez E, Nogales R (1998) Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei: a pilot-scale study. Bioresour Technol 63(3):205–211

    Article  CAS  Google Scholar 

  • Fernández-Gómez MJ, Nogales R, Insam H, Romero E, Goberna M (2010a) Continuous-feeding vermicomposting as a recycling management method to revalue tomato-fruit wastes from greenhouse crops. Waste Manag 30(12):2461–2468

    Article  Google Scholar 

  • Fernández-Gómez MJ, Romero E, Nogales R (2010b) Feasibility of vermicomposting for vegetable greenhouse waste recycling. Bioresour Technol 101(24):9654–9660

    Article  Google Scholar 

  • Fernández-Gómez MJ, Díaz-Raviña M, Romero E, Nogales R (2013) Recycling of environmentally problematic plant wastes generated from greenhouse tomato crops through vermicomposting. Int J Environ Sci Technol 10(4):697–708

    Article  Google Scholar 

  • Firoozian P, Bhat IUH, Khalil HPSA, Noor AM, Akil HM, Bhat AH (2011) High surface area activated carbon prepared from agricultural biomass: empty fruit bunch (EFB), bamboo stem and coconut shells by chemical activation with H3PO4. Mater Technol 26(5):222–228

    CAS  Google Scholar 

  • Garg VK, Suthar S, Yadav A (2012) Management of food industry waste employing vermicomposting technology. Bioresour Technol 126(1):237–443

    Google Scholar 

  • Gupta R, Garg V (2008) Stabilization of primary sewage sludge during vermicomposting. J Hazard Mater 153(3):1023–1030

    Article  CAS  Google Scholar 

  • Guzyte G, Sujetoviene G, Zaltauskaite J (2011) Effects of salinity on earthworm (Eisenia fetida). In: The 8th international conference of environmental engineering. Vilnius, Lithuania 19–20 May

  • Hait S, Tare V (2011) Optimizing vermistabilization of waste activated sludge using vermicompost as bulking material. Waste Manag 31(3):502–511

    Article  CAS  Google Scholar 

  • Hejcman M, Křišťálová V, Červená K, Hrdličková J, Pavlů V (2012) Effect of nitrogen, phosphorus and potassium availability on mother plant size, seed production and germination ability of Rumex crispus. Weed Res 52(3):260–268

    Article  CAS  Google Scholar 

  • Hendriksen NB (1990) Leaf litter selection by detritivore and geophagous earthworms. Biol Fert Soils 10(1):17–21

    Google Scholar 

  • Kananam W, Suksaroj TT, Suksaroj C (2011) Biochemical changes during oil palm (Elaeis guineensis) empty fruit bunches composting with decanter sludge and chicken manure. Sci Asia 37(1):17–23

    Article  Google Scholar 

  • Karmegam N, Daniel T (2009) Investigating efficiency of Lampito mauritti (Kinberg) and Perionyx ceylanensis (Michaelsen) for vermicomposting of different types of organic substrate. Environmentalist 29(3):287–300

    Article  Google Scholar 

  • Kaur A, Singh J, Vig AP, Dhaliwal SS, Rup PJ (2010) Cocomposting with and without Eisenia fetida for conversion of toxic paper mill sludge to a soil conditioner. Bioresour Technol 101(21):8192–8198

    Article  CAS  Google Scholar 

  • Khamforoush M, Bijan-Manesh M-J, Hatami T (2013) Application of the Haug model for process design of petroleum hydrocarbon-contaminated soil bioremediation by composting process. Int J Environ Sci Technol 10(3):533–544

    Article  CAS  Google Scholar 

  • Khwairakpam M, Bhargava R (2009) Vermitechnology for sewage sludge recycling. J Hazard Mater 161(2–3):948–954

    Article  CAS  Google Scholar 

  • Kumar VV, Shanmugaprakash M, Aravind J, Namasivayam SKR (2012) Pilot-scale study of efficient vermicomposting of agro-industrial wastes. Environ Technol 33(9):975–981

    Article  CAS  Google Scholar 

  • Lazcano C, Góemz-Brandón M, Domínguez J (2008) Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72(7):1013–1019

    Article  CAS  Google Scholar 

  • Li X, Xing M, Yang J, Huang Z (2011) Compositional and functional features of humic-acid like fractions from vermicomposting of sewage sludge and cow dung. J Hazard Mater 185(2–3):740–748

    Article  CAS  Google Scholar 

  • Lim PN, Wu TY, Sim EYS, Lim SL (2011) The potential reuse of soybean husk as feedstock of Eudrilus eugeniae in vermicomposting. J Sci Food Agric 91(14):2637–2642

    Article  CAS  Google Scholar 

  • Lim SL, Wu TY, Sim EYS, Lim PN, Clarke C (2012) Biotransformation of rice husk into organic fertilizer through vermicomposting. Ecol Eng 41:60–64

    Article  Google Scholar 

  • Lim SL, Wu TY, Clarke C (2014) Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms. J Agric Food Chem 62(3):691–698

    Article  CAS  Google Scholar 

  • Ludibeth S, Marina I, Vicenta ES (2012) Vermicomposting of sewage sludge: earthworm population and agronomic advantages. Compost Sci Util 20(1):11–17

    Article  Google Scholar 

  • Makan A, Assobhei O, Mountadar M (2014) Initial air pressure influence on in-vessel composting for the biodegradable fraction of municipal solid waste in Morocco. Int J Environ Sci Technol 11(1):53–58

    Article  Google Scholar 

  • Masciandaro G, Bianchi V, Macci C, Doni S, Ceccanti B, Iannelli R (2010) Potential of on-site vermicomposting of sewage sludge in soil quality improvement. Desalin Water Treat 23(1–3):123–128

    Article  Google Scholar 

  • Mohammad N, Alam MZ, Kabashi NA (2013) Development of composting process of oil palm industrial wastes by multi-enzymatic fungal system. J Mater Cycles Waste Manag 15(3):348–356

    Article  CAS  Google Scholar 

  • MPOB (2012) Sectoral status 2012: FFB processed by mill 2012. Economic and Industry Development Division, Malaysian Palm Oil Board. http://bepi.mpob.gov.my. Accessed 12 July 2013

  • Nahrul Hayawin Z, Abdul Khalil HPS, Jawaid M, Hakimi Ibrahim M, Astimar AA (2010) Exploring chemical analysis of vermicompost of various oil palm fibre wastes. Environmentalist 20(3):273–278

    Article  Google Scholar 

  • Nayak AK, Varma VS, Kalamdhad AS (2013) Effects of various C/N ratios during vermicomposting of sewage sludge using Eisenia fetida. J Environ Sci Technol 6(2):63–78

    Article  Google Scholar 

  • Nouri J, Nouri N, Moeeni M (2012) Development of industrial waste disposal scenarios using life-cycle assessment approach. Int J Environ Sci Technol 9(3):417–424

    Article  CAS  Google Scholar 

  • Park JM, Oh B-R, Seo J-W, Hong W-K, Yu A, Sohn J-H, Kim CH (2013) Efficient production of ethanol from empty palm fruit bunch fibers by fed-batch simultaneous saccharification and fermentation using Saccharomyces cerevisiae. Appl Biochem Biotechnol 170(8):1807–1814

    Article  CAS  Google Scholar 

  • Pleanjai S, Gheewala S, Savitri G (2004) Environmental evaluation of biodiesel production from palm oil in a life cycle perspective. In the Joint International conference on Sustainable Energy and Environment. Hua Hin, Thailand 1–3 December

  • Ravi Kumar P, Jayaram A, Somashekar RK (2009) Assessment of the performance of different compost models to manage urban household organic solid wastes. Clean Technol Environ Policy 11(4):473–484

    Article  Google Scholar 

  • Ruan J, Ma L, Yang Y (2011) Magnesium nutrition on accumulation and transport of amino acids in tea plants. J Sci Food Agric 97(7):1375–1383

    Google Scholar 

  • Sabrina DT, Hanafi MM, Mahmud TMM, Nor Azwady AA (2009) Vermicomposting of oil palm empty fruit bunch and its potential in supplying of nutrients for crop growth. Compost Sci Util 17(1):61–68

    Article  Google Scholar 

  • Samsuri AW, Sadegh-Zadeh F, She-Bardan BJ (2014) Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals. Int J Environ Sci Technol 11(4):967–976

    Article  CAS  Google Scholar 

  • Shak KPY, Wu TY, Lim SL, Lee CA (2014) Sustainable reuse of rice residues as feedstocks in vermicomposting for organic fertilizer production. Environ Sci Pollut Res 21(2):1349–1359

    Article  CAS  Google Scholar 

  • Shaw J, Beadle LC (1949) A simplified ultra-micro Kjeldahl method for estimation of protein and total nitrogen in fluid samples of less than 1.0 μl. J Exp Biol 26(1):15–23

    CAS  Google Scholar 

  • Sierra J, Desfontaines L, Faverial J, Loranger-Merciris G, Boval M (2013) Composting and vermicomposting of cattle manure and green wastes under tropical conditions: carbon and nutrient balances and end-product quality. Soil Res 51(2):142–151

    Article  Google Scholar 

  • Sim EYS, Wu TY (2010) The potential reuse of biodegradable municipal solid wastes (MSW) as feedstock in vermicomposting. J Sci Food Agric 90(13):2153–2162

    Article  CAS  Google Scholar 

  • Singh J, Kaur A, Vig AP, Rup PJ (2010) Role of Eisenia fetida in rapid recycling of nutrients from bio-sludge of beverage industry. Ecotoxicol Environ Saf 73(3):430–435

    Article  CAS  Google Scholar 

  • Stichnothe H, Schuchardt F (2011) Life cycle assessment of two palm oil production systems. Biomass Bioenergy 35(9):3976–3984

    Article  CAS  Google Scholar 

  • Suthar S (2008) Bioconversion of postharvest crop residues and cattle shed manure into value-added products using earthworm Eudrilus eugeniae Kinberg. Ecol Eng 32(3):206–214

    Article  Google Scholar 

  • Suthar S (2009) Bioremediation of agricultural wastes through vermicomposting. Biorem J 13(1):21–28

    Article  CAS  Google Scholar 

  • Suthar S (2010a) Pilot-scale vermireactors for sewage sludge stabilization and metal remediation process: comparison with small-scale vermireactors. Ecol Eng 36(5):703–712

    Article  Google Scholar 

  • Suthar S (2010b) Recycling of agro-industrial sludge through vermitechnology. Ecol Eng 36(8):1028–1036

    Article  Google Scholar 

  • Suthar S (2014) Toxicity of methyl parathion on growth and reproduction of three ecologically different tropical earthworms. Int J Environ Sci Technol 11(1):191–198

    Article  CAS  Google Scholar 

  • Tan HT, Dykes GA, Wu TY, Siow LF (2013) Enhanced xylose recovery from oil palm empty fruit bunch by efficient acid hydrolysis. Appl Biochem Biotechnol 170(7):1602–1613

    Article  CAS  Google Scholar 

  • Tognetti C, Mazzarino MJ, Laos F (2007) Cocomposting biosolids and municipal organic waste: effects of process management on stabilization and quality. Biol Fertil Soils 43(4):387–397

    Article  CAS  Google Scholar 

  • USDA (2012) Malaysia: stagnating palm oil yields impede growth. United States Department of Agriculture, Foreign Agricultural Service. http://www.pecad.fas.usda.gov/highlights/2012/12/Malaysia. Accessed 12 July 2013

  • Vig AP, Singh J, Wani SH, Singh Dhaliwal S (2011) Vermicomposting of tannery sludge mixed with cattle dung into valuable manure using earthworm Eisenia fetida (Savigny). Bioresour Technol 102(17):7941–7945

    Article  CAS  Google Scholar 

  • Wu TY, Mohammad AW, Md Jahim J, Anuar N (2009) A holistic approach to managing palm oil mill effluent (POME): biotechnological advances in the sustainable reuse of POME. Biotechnol Adv 27(1):40–52

    Article  Google Scholar 

  • Wu TY, Mohammad AW, Md Jahim J, Anuar N (2010) Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. J Environ Manag 91(7):1467–1490

    Article  CAS  Google Scholar 

  • Yadav A, Garg VK (2009) Feasibility of nutrient recovery from industrial sludge by vermicomposting technology. J Hazard Mater 168(1):262–268

    Article  CAS  Google Scholar 

  • Yadav A, Garg VK (2011) Industrial wastes and sludges management by vermicomposting. Rev Environ Sci Bio-Technol 10(3):243–276

    Article  CAS  Google Scholar 

  • Yadav KD, Tare V, Mansoor Ahammed M (2012) Integrated composting–vermicomposting process for stabilization of human faecal slurry. Ecol Eng 47:24–29

    Article  Google Scholar 

  • Yoshizaki T, Shirai Y, Hassan MA, Baharuddin AS, Abdullah NMR, Sulaiman A, Busu Z (2013) Improved economic viability of integrated biogas energy and compost production for sustainable palm oil mill management. J Clean Prod 44:1–7

    Article  CAS  Google Scholar 

  • Zaman AU (2013a) Identification of waste management development drivers and potential emerging waste treatment technologies. Int J Environ Sci Technol 10(3):455–464

    Article  Google Scholar 

  • Zaman AU (2013b) Life cycle assessment of pyrolysis–gasification as an emerging municipal solid waste treatment technology. Int J Environ Sci Technol 10(5):1029–1038

    Article  CAS  Google Scholar 

  • Zhao SL, Shang XJ, Duo LA (2013) Effects of ethylenediaminetetraacetic acid and ammonium sulfate on Pb and Cr distribution in Kochia scoparia from compost. Int J Environ Sci Technol. doi:10.1007/s13762-013-0426-6

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Higher Education, Malaysia, for sponsoring this research work under Fundamental Research Grant Scheme of FRGS/1/2013/STWN03/MUSM/02/1. In addition, the authors would like to thank Monash University, Sunway campus, for providing P. N. Lim with a PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Y. Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, P.N., Wu, T.Y., Clarke, C. et al. A potential bioconversion of empty fruit bunches into organic fertilizer using Eudrilus eugeniae . Int. J. Environ. Sci. Technol. 12, 2533–2544 (2015). https://doi.org/10.1007/s13762-014-0648-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0648-2

Keywords

Navigation